BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: IMSc. SEMESTER: IX
BRANCH: MATHEMATICS AND COMPUTING SESSION: MO/2024

SUBJECT: MA502 NUMBER THEORY

TIME: 3 Hours FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

Q.1(a) Q.1(b)		[5] [5]	CO CO1 CO4	BL
Q.2(a)	Determine whether (i) $x^2 \equiv -35 \pmod{97}$ and (ii) $x^2 \equiv 101 \pmod{1987}$	[5]	CO1	
Q.2(b)	are solvable. Write down the Euler's criteria in terms of the Legendre's symbol. Prove that $(-1 p)$ is 1 if $p \equiv 1 \pmod{4}$, and is -1 if $p \equiv 3 \pmod{4}$.	[5]	CO4	
Q.3(a) Q.3(b)	What are the simple continued fraction representations of 129 and $\sqrt{29}$? Find the least positive solution of $x^2-29y^2=-1$ and $x^2-29y^2=1$, by generating the convergents of the expressions of $\sqrt{29}$.	[5] [5]	CO3	
Q.4(a)	Find the remainder when $7^{1000000}$ is divided by 19 and 15! is divided by 19.	[5]	CO2	
Q.4(b)	Find the solutions for each of the individual linear relations given below. (i) $6x \equiv 9 (mod 15)$ and (ii) $6x \equiv 5 (mod 19)$.	[5]	CO2	
Q.5(a)	Find all integers n such that $\phi(n) = 2n$. Find $\phi(1991)$.	[5]	CO2	
Q.5(b)	Check whether the following numbers are primes. Establish your claim	[5]	CO1	
	(i) 977 in the set of all integers. (ii) $1 + \sqrt{-5}$ in $Z(\sqrt{-5})$.			

:::::25/11/2024:::::E