BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: IMSc SEMESTER: V

BRANCH: MATHEMATICS SESSION: MO/2024

SUBJECT: MA303 FUZZY LOGIC

TIME: 3 Hours FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

Q.1(a) Order the fuzzy sets defined by the following membership function grades(assuming [5] 1 1,2, $x \ge 0$) by the inclusion(subset) relation 3 A(x)=1/(1+10x), $B(x)=(1/(1+10x)^0.5)$, $C(x)=(1/(1+10x)^0.5)$.

Q.1(b) Find the following for the two given sets: [5] 1 1,2, (i) Height of A₁ and A₂. (ii) Is A₁ or A₂ normal? iii. Sketch graph of A₁ and A₂. 3

$$\widetilde{A_{1}} = \begin{cases} x - 5, & \text{if } 5 \le x \le 6 \\ -x + 7. & \text{if } 6 < x \le 7 \\ 0, & \text{otherwise} \end{cases} \qquad \widetilde{A_{2}} = \begin{cases} 0.5\left(\frac{x}{3} - \frac{5}{3}\right), & \text{if } 5 \le x \le 8 \\ -0.5\left(\frac{x}{3} + \frac{11}{3}\right). & \text{if } 8 < x \le 10 \\ 0, & \text{otherwise} \end{cases}$$

- Q.2(a) Let $\tilde{A} = \{(x_1,0.3),(x_2,0.4),(x_3,0.5)\}$ and $\tilde{B} = \{(y_1,0.5),(y_2,0.6)\}$ be two fuzzy sets defined on [5] 2 1,2, the universes of discourse $X = \{x_1,x_2,x_3\}$ and $Y = \{y_1,y_2\}$ respectively. Then the fuzzy relation \tilde{R} resulting out of the fuzzy Cartesian product $\tilde{A}X\tilde{B}$. Also find α -cut of the fuzzy relation \tilde{R} .
- Q.2(b) Compute the complements, intersection and union of the following fuzzy relations R and S.

L	R	a	Ь	C	d
	a	1.0	0.2	0.4	0.0
ſ	b	0.0	0.1	0.0	0.9
ſ	С	0.1	0.0	1.0	0.0
Ī	d	0.0	0.4	0.0	0.1

S	a	b	С	d
a	1.0	0.0	0.0	0.4
b	0.0	0.0	0.4	0.9
С	0.4	0.0	0.1	0.0
d	0.5	1.0	0.0	0.0

- Q.3(a) Define α -cut of a triangular fuzzy number. Find α -cut of a triangular fuzzy number [5] 3 1,2 (6,7,8). Is multiplication operation of a triangular fuzzy number a fuzzy number? 3
- Q.3(b) Calculate the following operations of triangular fuzzy sets by using α -cut operation A = [5] 3 1,2 (1, 3, 8) & B= (2, 4, 5).
 i. A(v)B ii. $A(\Lambda)B$. iii. A (/) B.

Q.4(a)	State whether the following argument is valid or not. If valid, give proof. If not valid, give counter example. If a baby is hungry, the baby cries. If the baby is not mad, then he does not cry. If a baby is mad, then he has a red face. Therefore, if a baby is hungry, then he has a red face.	[5]	4	1,2,
Q.4(b)	Let us define the input on the universe of discourse X= $[0,50,100,150,200]$ and Y= $[0,50,100,150,200]$. Define two fuzzy sets w and M as follows w = $[1/0+0.9/50+0.3/100+0/150+0/200] \subset X$ and M= $[0/0+0.4/50+1/100+0.4/150+0/200] \subset X$ and S= $[0/0+0.5/100+0.9/150+1/200] \subset Y$. Then construct the proposition "If w, then not S".	[5]	4	1,2,
Q.5(a)	Write a note on fuzzy decision with appropriate examples.	[5]	5	1,2, 3
Q.5(b)	Formulate the fuzzy linear programming problem by Zimmermanns method and show graphs and membership functions for the formulations. Max Z=6x ₁ +4x ₂ +3x ₃ Subject to: $8x_1+6x_2+5x_3 \le 500 \\ 10x_1+8x_2+3x_3 \le 360 \\ x_1,x_2,x_3 \ge 0$ Take b ₀ =21.25 and p ₀ =1.25 .Also p ₁ =75,p ₂ =54.	[5]	5	1,2,

:::::22/11/2024:::::M