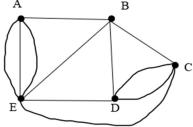
BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

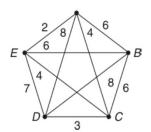
CLASS: BTECH SEMESTER : III SESSION : MO/2024

SUBJECT: MA205 DISCRETE MATHEMATICS

TIME: 3 Hours FULL MARKS: 50

INSTRUCTIONS:


- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.


			CO	BL
Q.1(a) Q.1(b)	Show that $[p \land (p \leftrightarrow q)] \rightarrow q$ is a tautology. Prove that $(p \rightarrow q) \land (q \rightarrow r)$ and $(p \lor q) \rightarrow r$ are logically equivalent.	[5] [5]	1 1	3
Q.2(a) Q.2(b)	Solve the recurrence relation $a_n=4a_{n-1}-4a_{n-2}+2^n$. Solve the recurrence relation $a_{n+2}-2a_{n+1}+a_n=2^n$ by the method of generating functions with initial conditions $a_0=2$ and $a_1=1$.	[5] [5]	2 2	3 4
Q.3(a)	Show that $2x \log(x^2 + 1) = O(x^2)$.	[5]	3	3
Q.3(b)	Given $A=\{1,2,3,4\}$ and R is the relation on A represented by the matrix $M_R=\begin{bmatrix}1&1&0&0\\1&0&1&0\\0&0&0&1\\0&0&0&0\end{bmatrix}$. Find the transitive closure of R by using Warshall's algorithm. Write W_0,W_1,W_2,W_3 , and W_4 matrices.	[5]	3	4
Q.4(a)	Prove that the set $Z_4 = \{0, 1, 2, 3, 4\}$ is an abelian group under the operation addition modulo	[5]	4	3

- 5. Q.4(b) Find the minimum distance of the (2,4) encoding function $e: B^2 \to B^4$ defined by e(00) = [5] 4 3 0000, e(01) = 0110, e(10) = 1011, e(11) = 1100.
- Q.5(a) Determine whether the flowing graph is a Euler graph or not. Construct a Euler circuit if it is [5] 5 3
- Q.5(a) Determine whether the flowing graph is a Euler graph or not. Construct a Euler circuit if it is [5] 5 3 a Euler graph.

 A
 B

Q.5(b) Use Prim's algorithm to find a minimal spanning tree (MST) for the following weighted graph. [5] 5 4 Find the weight of the MST.

::::25/11/2024 E:::::