BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION MO/2024)

CLASS: **IMSc** SEMESTER: III **BRANCH:** MATHEMATICS AND COMPUTING SESSION: MO/2024 SUBJECT: MA202R1 ABSTRACT ALGEBRA TIME:02 **FULL MARKS: 25** hours **INSTRUCTIONS:** 1. The question paper contains 5 questions each of 5 marks and total 25 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates CO BL Q.1(a) If $a \equiv b \bmod n$ and $c \equiv d \bmod n$, then prove that [2] $ac \equiv bd \mod n$ Q.1(b) [3] 1 Examine if the relation ρ on the set Z is an equivalence relation, where $\rho = \{(a, b) \in \mathbb{Z} \times \mathbb{Z}: 3a + 4b \text{ is divisible by 7}\}\$ Q.2(a) Find all the cyclic subgroups of the group $(Z_5, +)$. [2] Q.2(b) Prove that (z, .) is a group, where '.' is defined as [3] a.b = a + b + 1, $a,b \in Z$ Q.3(a) Find [*G*: *H*], where $H = \{\bar{0}, \bar{1}, \bar{2}, \bar{3}\}$ and $G = (Z_6, +)$. [2] 2 Q.3(b) Let G = (Z, +) and $\phi: G \rightarrow G$ is defined by $\phi(x) = -x$, $x \in Z$. Prove that ϕ is a [3] 2 homomorphism and determine $ker \phi$. Q.4 Prove that, if $\phi: (G,.) \rightarrow (G',*)$ be a homomorphism, then ϕ is injective iff [5] 2 $Ker \phi = \{e_{G'}\}\$, where $e_{G'}$ is the identity element of (G',*). Q.5 Find the conjugacy classes $cl(\rho_0)$, $cl(\rho_1)$ and $cl(\rho_2)$ in S_3 . Here [5] 3 $\rho_0 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \quad \rho_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \quad \rho_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$ Note that others elements of S_3 follow usual notations.

:::::20/09/2024:::::E