BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION MO/2024)

CLASS: IMSc SEMESTER: V
BRANCH: CQEDS SESSION: MO/2024

SUBJECT: ED307 PARAMETRIC INFERENCE

TIME: 02 Hours FULL MARKS: 25

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 5 marks and total 25 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates

______ CO BL Q.1(a) Let $X_1, X_2, X_3, \dots, X_n$ be a random sample from N (μ, σ^2) . Find mean and variance of [2] 3 sample mean and sample variance both. Q.1(b) Define asymptotic efficiency. Show that MLE of $\boldsymbol{\mu}$ in a random sample [3] 3 1 $X_1, X_2, X_3, \ldots, X_n$ from N $(\mu, 1)$ is asymptotically efficient estimator of μ . Q.2(a) Let $X_1, X_2, X_3, \dots, X_n$ be a random sample from N $(0, \sigma^2)$. Calculate Bias and Mean 4 square error of MLE of σ^2 . Define sufficiency of a statistic. Using definition of sufficient statistics, prove that [3] Q.2(b) 2 3 $T = X_1, +X_2$ is a sufficient estimator for a family of distribution Bernoulli (θ). Let $X_1, X_2, X_3, \ldots, X_n$ be a random sample from N $(\mu, 1)$. Write Cramér-Rao lower 4 bound for variance of an unbiased estimator of μ . Prove that sample mean is most efficient estimator of µ. State Basu's theorem. Let X_1, X_2, \dots, X_n be a random sample from U (0, θ) [3] 4 distribution. Prove that nth order statistics $X_{(n)}$ is independent of ratio $\frac{X_{(1)}}{X_{(n)}}$. Q.4(a) Let X_1, X_2, \dots, X_n be a random sample from Poisson (θ) distribution. In the 5 exponential family, derive the canonical form of the sufficient statistic for the parameter θ of a Poisson distribution. Let X_1, X_2, \dots, X_n be a random sample from Poisson (θ) distribution. Find UMVUE [3] Q.4(b) 4 of $e^{-\theta}$. Q.5(a) Define Ancillary statistics. Let X_1, X_2, \dots, X_n be a random sample from U (θ , 1 + 3 θ) distribution. Find an ancillary statistics using this random sample. Write statement of Neyman Factorization Theorem. Let X_1, X_2, \dots, X_n be a random 5 4 sample from N (1, θ) distribution. Find sufficient estimator of θ using Neyman Factorization Theorem. Is this sufficient estimator also a minimal sufficient estimator?

:::::23/09/2024:::::E