BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: IMSc SEMESTER: I BRANCH: QEDS SESSION: MO/2024

SUBJECT: ED24101 INTRODUCTORY ANALYSIS

TIME: 03 Hours FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates.
- 5. All the notations used in the question paper have usual meanings.

Q.1(a) Q.1(b)	Give an example of a set which is open and closed both. Justify your answer. Using Cauchy's limit theorem show that the sequence $\left\{a_n^{\frac{1}{n}}\right\}$ where $a_n=\frac{n^n}{(n+1)(n+2)\dots(n+n)}$ converges and find the limit.	[4] [6]	CO CO1 CO1	BL 1 2
Q.2(a)	Does the convergency of the sequence $\{a_n\}_{n=1}^{\infty}$ imply the convergency of the series	[3]	CO2	2
Q.2(b)	$\sum_{n=1}^{\infty} a_n$? Justify your answer. Show that the series $\frac{3.6.93n}{7.10.13(3n+4)} x^n$, $x > 0$ converges for $x \le 1$ and diverges for $x > 1$.	[5]	CO2	2
Q.3(a)	Find the n^{th} order derivative of $y = x^{n-1} \ln x$ at $x = \frac{1}{2}$.	[3]	CO3	3
Q.3(b)	If $y = \cos(m\sin^{-1}x)$, then prove that $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} + (m^2-n^2)y_n = 0$. Hence, determine $y_n(0)$.	[5+2]	CO3	3
Q.4(a)	Interpret Rolle's theorem geometrically, and verify the theorem for the function $f(x) = 1 - (x - 1)^{\frac{2}{3}}$ on [0,2].	[2+3]	CO4	4
Q.4(b)	Apply L'Hôpital rule to find the values of a, b and c such that the function $f(x) = \begin{cases} \frac{x(a+b\cos x) - c\sin x}{x^5}, & \text{if } x \neq 0 \\ 1, & \text{if } x = 0. \end{cases}$ is continuous at $x = 0$.	[5]	CO4	4
Q.5	Providing all the necessary information, make a rough sketch of the curve $x^3 + y^3 + 6xy = 0$.	[10]	CO5	5

:::::09/12/2024:::::M