BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION MO/2024)

CLASS: BTECH SEMESTER: III/ADD BRANCH: CHEMICAL ENGINEERING / FOOD ENGINEERING AND TECHNOLOGY SESSION: MO/2024

SUBJECT: CL219 HEAT TRANSFER OPERATIONS

TIME: 02 Hours FULL MARKS: 25

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 5 marks and total 25 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.

the heat loss from the tip of the fin).

4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates

.....

Q.1(a)	Derive the differential equation of heat conduction in Cartesian coordinates Subsequently, derive the equation for One-dimensional, steady state, with no	[3]	CO 1	BL 2
Q.1(b)	internal heat generation Illustrate the term thermal diffusivity with its unit.	[2]	1	2
Q.2(a)	· · · · · · · · · · · · · · · · · · ·	[2]	5	5
Q.2(b)	plays crucial role for wire insulation. Derive the steady state conduction equation through a composite wall and explain the analogy between heat flow and electrical flow.	[3]	5	2
Q.3(a)		[3]	2	1
Q.3(b)	properties of fluid associated with the mentioned cases and why? Describe the term mean film temperature.	[2]	2	2
Q.4(a)	A steel ball of diameter 60 mm is initially in thermal equilibrium at 1030 (oC) in a furnace. It is suddenly removed from the furnace and cooled in ambient air at 30(oC), with convective heat transfer coefficient $h = 20 \text{ W}$ / m2K. The thermophysical properties of steel are density $r = 7800 \text{ kg/m2}$, conductivity $k = 40 \text{ W}$ / m^2 .K and specific heat $c = 600 \text{ J}$ / kg K. Find the time required in seconds to cool the steel ball in air from 1030(oC), to 430(oC).	[2]	3	3
Q.4(b)	Describe the Biot number, Nusselt number and Prandtl Number with physical significance. Explain the physical significance when Biot number<0.01 and 10, Nusselt number- 1,10 and 1000 and Prandtl Number < 1 and 10.	[3]	2	1
Q.5(a) Q.5(b)	Describe the term Fin effectiveness. Which of the following arrangement of pin fin will give a higher heat transfer rate from a hot surface? A. 6 fins of 10 cm length B. 12 fins of 5 cm length	[2] [3]	2 3	2 4

:::::24/09/2024:::::E

The base temperature of the fin is maintained at 200° C and the fin is exposed to the environment at 15° C with a convection coefficient of 25 W/m^2 K. Each fin has a cross-sectional area of 2.5 cm^2 , a perimeter 5 cm, and is made of a material having thermal conductivity of 250 W/mK. Consider the fin with an insulated tip (neglect