BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BSc SEMESTER: IIIrd
BRANCH: CHEMISTRY SESSION: MO/2024

SUBJECT: CH222 BASIC CHEMISTRY-IV

TIME: 3 Hours FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

Q.1(a) Q.1(b)	Derive the expression for the energy of a particle in a 1D box of length 'a'. What are the corresponding wavefunctions?	[5] [5]	CO 1 1	BL 2 3
Q.2(a)	Explain the bonding in a) $[Cr(NH_3)_6]^{3+}$ and b) $[CoF_6]^{3-}$ metal complexes using valance bond theory (VBT) and predict whether the complex is an outer orbital complex or inner orbital complex. Also, comment on its magnetic properties.	[5]	2	2
Q.2(b)	Write the IUPAC Nomenclature of the following metal complexes: (i) $[Co(NH_3)_6]Cl_3$ (ii) $Ca_2[Fe(SCN)_6]$ (iii) $K_3[Fe(CN)_4Br_2]$ (iv) $K[PtCl_3(NH_3)_2(H_2O)]$ (v) $[Co(NCS)_4]^{2^{-}}$	[5]	2	3
Q.3(a)	Using the VSEPR model predict the geometry, shape, and hybridization (of the central atom) of the following compounds $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	[5]	3	3
Q.3(b)	(i) What are interhalogen compounds? Give two examples of interhalogen compounds. (ii) what are Pseudohalogen and polyhalide ions? Give examples in each case.	[5]	3	2
Q.4(a) Q.4(b)	State and explain the Born-Oppenheimer approximation. Obtain the forms for the rotational line positions and the maximum intensity spectral line.	[5] [5]	4	3 2
Q.5(a)	Discuss the rotational fine structure of fundamental vibrational transition belonging to the same electronic state.	[5]	5	3
Q.5(b)	By means of balanced chemical equations and a statement of conditions, describe a suitable synthesis of (i) xenon difluoride, (ii) xenon hexafluoride, (iii) xenon trioxide.	[5]	5	2

:::::20/11/2024::::E