BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION MO/2024)

CLASS: BCA SEMESTER: V BRANCH: BCA SESSION: MO/2024

SUBJECT: CA315 SOFT COMPUTING

TIME: 02 Hours FULL MARKS: 25

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 5 marks and total 25 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates

4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates				
Q.1(a)		[2]	CO 1	BL 2
Q.1(b)	 (i) Normalization (ii) core (iii) height (iv)support Consider the Following triangular fuzzy number set and perform: A = { (-1, 1, 3)}, B= { (1, 3, 5)} (I) Addition, Subtraction (A-B) and Multiplication operation (II) Plot the results 	[3]	1	3
Q.2(a)	Consider the fuzzy set A described on universe of discourse $X = \{5,10, 20,30,40, 50\}$ Written as A= $\{1.0/5 + 1.0/10 + 0.8/20 + 0.5/30 + 0.2/40 + 1.0/50\}$ Find the fuzzy set B on the same universe, which is defined as membership function $\mu_B(x) = 2 / (1+x)^2 + 1$	[2]	1	3
Q.2(b)	The capacity of an amplifier on a normalized universe say $[0,100]$ can be described linguistically by the following fuzzy variables: Powerful= $\{(0,1), (0.4,10), (0.8,50), (1,100)\}$ and weak= $\{(1,1), (0.9,10), (0.5,50), (0.2,80), (0,100)\}$.	[3]	1	3
	Find the belongingness of the following linguistic phrases used to describe the capacity of various amplifiers. (i) not very powerful and slightly weak, (ii) extremely powerful or not weak.			
Q.3(a)	What is the characteristic of if the fuzzy relation is symmetric, asymmetric and anti-symmetric?	[2]	1	1
Q.3(b)	Let the following fuzzy sets: A = { (x1, 0.4), (x2, 0.8), (x3, 0.7) }, B = { (y1, 1), (y2, 0.4)} A' = { (x1, 0.6), (x2, 0.9), (x3, 0.3) } Find the value of the following composition, if R = (A X B) B' = A' o R (x, y)	[3]	1	3
Q.4(a) Q.4(b)	Draw the block diagram of Fuzzy Inference system. Explain with diagram: The Mamdani fuzzy reasoning rule of multiple rule with multiple antecedent.	[2] [3]	2 2	2 2
Q.5(a) Q.5(b)	What is basic structure of Genetic Algorithm? Explain crossover operators used in Genetic Algorithm.	[2] [3]	3	1 2

:::::23/09/2024:::::M