BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: MSc SEMESTER: 1st BRANCH: Biotechnology SESSION: MO/2024

SUBJECT: BT401 MOLECULAR CELL BIOLOGY

TIME: 3 Hours FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

0.1(2)	Evaluin the concept of relative permeability of melecules serves the cell membrane	re 1	CO	BL
Q.1(a)	Explain the concept of relative permeability of molecules across the cell membrane. How does the size and polarity of a molecule affect its permeability?	[5]	1	2
Q.1(b)	With reference to the fluid mosaic model, describe the role of lipids and proteins in maintaining membrane fluidity and function.	[5]	2	3
Q.2(a)	Compare the structure and functions of microtubules, actin filaments, and intermediate filaments in the cytoskeleton.	[5]	2	4
Q.2(b)	Outline a method to measure the rate of diffusion of molecules across the animal cell plasma membrane, highlighting the experimental setup and expected results	[5]	4	5
Q.3(a)	Describe the structural and functional roles of desmosomes, tight junctions and gap junctions.	[5]	2	1
Q.3(b)	Explain how the endoplasmic reticulum (ER) and Golgi apparatus contribute to intracellular trafficking and protein sorting.	[5]	1	4
Q.4(a)	Provide a detailed overview of regulated proteolysis through polyubiquitination. Include the steps of ubiquitination, its role in protein degradation.	[5]	3	3
Q.4(b)	With the help of a schematic diagram, compare the structure of flagella in prokaryotes and eukaryotes.	[5]	1	2
Q.5(a)	Describe the process of mitosis, focusing on the key events of each phase. Discuss the Anaphase-Promoting Complex (APC), its regulation, and its significance in ensuring accurate chromosome segregation.	[5]	3	2
Q.5(b)	Explain the role of G-protein coupled receptors (GPCRs) in activating calmodulin. Discuss the downstream signaling pathway involving calmodulin, emphasizing its biological implications.	[5]	3	3

:::::27/11/2024 E:::::