BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: MTECH SEMESTER: I

SESSION: MO/2024 **BRANCH: BIOTECHNOLOGY**

SUBJECT: BE503 ADVANCED REACTION ENGINEERING

TIME: 3 Hours **FULL MARKS: 50**

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data handbook/Graph paper etc. to be supplied to the candidates in the examination hall.

Q.1(a) Q.1(b)	What are the various contacting patterns for heterogeneous reaction? The irreversible reaction, $C(g) + B(s) \rightarrow R(g) \text{ first order with respect to and takes place on a flat surface.} \\ \text{Dilute A diffuses through stagnant gas film onto a plain surface consisting of B. On the surface A reacts with B to give R which diffuses back to surface. Develop a rate expression for above reaction.}$	[3] [7]	CO 1 1	BL 3 3,4
Q.2(a) Q.2(b) Q.2(c)	List the general characteristics of catalysts Does a catalyst alter equilibrium conversion of a chemical reaction? Explain. Define Effectiveness Factor of a catalyst. Can effectiveness factor of a catalyst be greater than one? Explain	[3] [4] [3]	2 2 2	3 3,4 3,4
Q.3(a)	Explain the mechanism of solid catalyzed reaction. A porous catalyst particle is	[5]	3	3,4
Q.3(b)	soaked by reactant A. Discuss the factors influencing the rate of reaction of A. A second order reaction $A \to R$, is studied in an experimental recycle reactor, with very large recycle ratio. The data recorded are as follows:	[5]	3	3,4
	 Void volume of the reactor: 1 l Amount of catalyst used: 3 gms Feed to the reactor, v₀ = 1 l /hr with C_{A0} = 2 mol / l Concentration of A in the exit stream from the recycle stream, C_{Aout} = 0.5 mol / l Calculate the amount of catalyst needed in a packed bed reactor, to achieve 80%			
	conversion, for feed to the reactor, $v_0 = 1000 l / hr$; $C_{A0} 1 mol / l$			
Q.4(a) Q.4(b)	Explain the resistances that would be encountered during the burning of coal. It is proposed to remove CO_2 from air by counter current contact with water at 25^{0} C.	[3]	4 4	3,4 3,4
	(i) Find the resistance of the gas and liquid film for this operation.(ii) Suggest the simplest form of rate equation for tower design.	[3.5]		
	Data: For CO ₂ between air and water,	[3.5]		
	$k_g a = 0.80 \text{ mol/(h·m}^3 \cdot Pa)$			
	$k_l a = 25 h^{-1}$			
	$H = 3000 (Pa \cdot m^3)/mol$			

Q.5(a) Recombinant E. coli cells contain a plasmid derived from pBR322 incorporating 5 3,4 genes for the enzymes *B-lactamase* and catechol 2,3-dioxygenase from Pseudomonas putida. To produce the desired enzymes, the organism requires aerobic conditions. The cells are immobilised in spherical beads of carrageenan gel. The effective diffusivity of oxygen is: 1.4x10⁻⁹ m² s⁻¹. Oxygen uptake is zero-order with intrinsic rate constant 10⁻³ mol s⁻¹ m⁻³ of particle. The concentration of oxygen at the surface of the catalyst is 8x10⁻³ kg m⁻³. Cell growth is negligible. (a). What is the maximum particle diameter for aerobic conditions throughout the catalyst particles? [3] Q.5(b) For the system described above in Q.5 (a), 5 3,4 For particles half the diameter calculated in (a), what is [3.5] the minimum oxygen concentration in the beads? The density of cells in the gel is reduced by a factor of five. If the specific activity of the cells is independent of [3.5]cell loading, what is the maximum particle size for aerobic conditions?

:::::21/11/2024:::::E