BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: B. TECH SEMESTER: 7th
BRANCH: BIOENGINEERING & BIOTECHNOLOGY SESSION: MO/24

SUBJECT: BE402 BIOREACTOR AND BIOPROCESS DESIGN

TIME:3 hour FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates

Q.1(a) (b)	Describe the dynamic method of determination of K_La for aerobic fermentation. An organism is used in chemostat culture in a 60 m³ fermenter. The feed contains 12 g/L glucose, and μ max and Ks of the organism is 0.3 h¹¹ and 0.2 g/L, respectively. What flow rate is required for steady-state substrate concentration to reach 1.5 g/L? What will the cell density be at that flow rate? $Y_{x/s} = 0.06$ g/g	[5] [5]	CO 1 1	BL 3 5
Q.2(a)	Draw the E curve for	[5]	2	3
	i) Ideal PFR; ii) Ideal MFR; iii) Short-circuiting in PFR; iv) Channeling in PFR; v) Internal recirculation in PFR			
(b)	A 12 m length pipe is packed with 1 m of 2 mm, 9 m of 1 cm, and 2 m of 4 mm particles. Estimate the variance (σ^2) in the output C curve for a pulse input into this packed bed if the fluid takes 2 min to flow through the bed. Assume a constant bed void and a constant intensity of dispersion given by $D/ud_p = 2$.	[5]	2	4
Q.3(a) (b)	Derive the performance equation for an ideal batch reactor. Why scale down is needed?	[5]	3	2
	A specific enzyme acts as catalyst in the fermentation of reactant A. At a given enzyme concentration in the aqueous feed stream (25 L/min) find the volume of plug flow reactor needed for 95% conversion of reactant A (C_{AO} = 2 mol/L). The kinetics of the fermentation at this enzyme concentration is given by	[5]	3	5
$-r_{A} = \frac{0.1 C_{A}}{1 + 0.5 C_{A}}$				
Q.4(a) (b)	Describe the pH and Temperature sensor used in the Bioreactor. Explain with a diagram the principle, advantages, and disadvantages of the 'P' type, 'I' type and 'D' type controllers.	[5] [5]	4 4	3
Q.5(a)	With the help of a flow diagram, illustrate the penicillin production and purification process.	[5]	5	3
(b)	A fed-batch culture operates with the intermittent addition of glucose solution. The values of the following parameters are given at $t=2h$. Considering the system is at a quasi-steady state, calculate V_0 , S and X .	[5]	5	5
	Given, V = 1000 mL; S_0 = 100 g/L; K_s = 0.1 g/L; X_0 = 30 g; F = 200 mL/h; μ_{max} = 0.3 h ⁻¹ ; $Y_{x/s}$ = 0.5 g/g.			

:::::20/11/2024:::::M