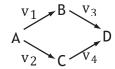
BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION MO/2024)

CLASS: BTECH SEMESTER: VII
BRANCH: BIOTECHNOLOGY SESSION: MO/2024

SUBJECT: BE313 METABOLIC ENGINEERING


TIME: 02 Hours FULL MARKS: 25

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 5 marks and total 25 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates

Q.1(a)	With a neat flow chart, explain the steps involved in the biosynthesis of secondary metabolites?	[5]	CO CO1	BL Understanding
Q.2(a)	What is metabolism, catabolism, anabolism? Discuss about the regulation of metabolic pathways.	[2]	CO1	Applying
Q.2(b)		[3]	CO1	Remembering
Q.3(a)	Define feedback inhibition. Write about isotopic flux measurement and its uses?	[2]	CO1	Analyzing
Q.3(b)		[3]	CO2	Remembering
Q.4(a)	Derive the stoichiometry matrix for each of the following networks. Write out the mass-balance equation for the following branched system:	[5]	CO2	Evaluating

Q.5(a) Consider a pharmaceutical company that manufactures two drugs, say x and y, from two genetically engineered organisms, A and B. Let us assume that organism A can produce at maximum 4 kg of drug x per day and organism B a maximum of 2 kg of y per day. Let us also assume that the factory can only process a total of 5 kg of any drug per day due to packaging equipment limitations. If the company can make a profit of \$100 per kg for drug x and a profit of \$150 per kg for drug y, what is the optimal rate at which each drug should be manufactured in order to maximize profit?

[5] CO2 Evaluating

:::::20/09/2024:::::M