BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: MTECH/PrePhD SEMESTER: I **BRANCH: AIML** SESSION: MO/2024

SUBJECT: AI502 ADVANCED CONCEPTS OF SUPERVISED LEARNING

TIME: 3 Hours **FULL MARKS: 50**

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

CO BL 2

Q.1(a) Describe the KNN algorithm. Apply KNN (K=3) using Euclidean distance for the data point [5] 1 X = (74, 0) for the given dataset, and predict the label.

S. No	F1	F2	Label
1	84	2	1
2	60	1	1
3	29	1	1
4	76	2	1
5	70	0	1
6	79	1	1
7	72	1	0
8	28	0	0
9	20	1	0
10	46	0	0

Q.1(b)	Derive the expression for Naïve Bayes' classifier for a feature vector X with n features and a categorical classification label y .	[5]	1	5
Q.2(a)	Support vector machine is a constrained optimization problem. Justify your answer by	[5]	2	5
Q.2(b)	mathematical justification. Discuss the following: (i) Feature selection (ii) Overfitting and pruning in Decision trees	[5]	2	2
Q.3(a)	Explain the back-propagation algorithm for learning model parameters in a neural network.	[5]	3	2
Q.3(b)	ven a single neuron (sigmoid function), two inputs, no bias, and one training example: =1, x2=1, y=1}, w1=0.4, w2=0.6, learning rate=0.5. Compute the new values for w1 d w2 after one iteration of gradient descent backpropagation.		3	3
Q.4(a) Q.4(b)	Illustrate the working of EM algorithm with the help of an example. What is semi supervised learning? Explain its importance with any real-world application.	[5] [5]	4 4	3 5
Q.5(a) Q.5(b)	Explain the bagging algorithm of ensemble learning. Illustrate with an example. Summarize the working of the Adaboost algorithm.	[5] [5]	5 5	3

:::::22/11/2024::::E