BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: I.MSc/MSc SEMESTER: IX/II
BRANCH: Physics SESSION: MO/2023

SUBJECT: PH510 PHYSICS OF LOW DIMENSIONAL SEMICONDUCTORS

TIME: 3 Hours FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

.....

Q.1(a)	Show that density of states for 1D structure is $D(E) \propto E^{-1/2}$ and for 2D structures is $D(E) \sim E^0$. Constituting the state of the size of the si	[5]	CO 1	BL 5
Q.1(b)	$D(E) \propto E^0$. Graphically show the variation of density of states with respect to E? Outline how the reduced dimensionality of semiconductors for miniaturized devices put new challenges in terms of physical laws?	[5]	1	4
Q.2(a)	Write a short note on "Metal organic chemical vapor deposition". Discuss the case of	[5]	2	1
Q.2(b)	growth of GaAs? Sketch the band diagram for a hetro-junction between p-type AlGaAs and n-type GaAs. Show that this can trap a (two-dimensional) hole gas at the interface?	[5]	2	3
Q.3(a)	For a parabolic potential well (grown in both conduction and valence bands into GaAs by a	[5]	3	2
Q.3(b)	graded composition) of $Al_xGa_{1-x}As$ show that the energy levels are equispaced? Plot a graph of the energy of the bound states in a GaAs well 0.3 eV deep as a function of width from 0 to 30 nm?	[5]	3	6
Q.4(a)	Describe the concept of T-matrix for potential well problems? Calculate the tunnelling probability across a square barrier of height V_o $T = \frac{16E}{V} \exp(-2K_2 a)$	[5]	4	3
Q.4(b)	V_o Describe construction and working of a Near-field scanning probe microscope?	[5]	4	3
Q.5(a) Q.5(b)	Write a short note on Physics of 2-dimensional materials and their applications? Discuss the concept of modulation doping?	[5] [5]	5 5	4

:::::24/11/2023 E:::::