BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: I M Sc/M Sc/Pre Ph.D SEMESTER : IX/III/I BRANCH: Physics SESSION : MO/2023

SUBJECT: PH505 THEORY OF SOLIDS

TIME: 3 Hours FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

Q.1(a) Q.1(b)	Prove the Bloch theorem and explain the reduced zone scheme. Using E ~k curve Distinguish conductor, insulator and semiconductor materials.	[5] [5]	1 1	BL V
Q.2(a)	What is electronic density of states (DOS) of a material. Build up the mathematical relation and show that the DOS of a two dimensional material does not depend on the energy.	[5]	2	I, III
Q.2(b)	Sodium has a density 971 kg/m ³ and an atomic weight of 22.99. What is its Fermi Energy?	[5]	2	I
Q.3(a)	Starting with Maxwell's equation develop the expression for the refractive index and permittivity of nonmagnetic material.	[5]	3	VI
Q.3(b)	Summarize different types of phase transitions in ferroelectrics.	[5]	3	II
Q.4(a) Q.4(b)	Develop the mathematical expression for phase transition using Ising Model. Explain Landau theory of ferromagnetism.	[5] [5]	4 4	III II
Q.5(a)	Explain the mechanism of propagation of light wave in a dense optical medium.	[5]	5	II
Q.5(b)	Show that the absorption coefficient of Lorentz oscillator at the line centre does not depend on the value of natural frequency (w_0).	[5]	5	ii

:::::24/11/2023 E:::::