BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: IMSC/MSC/PRE-PHD SEMESTER :IX/III BRANCH: PHYSICS SESSION : MO/2023

SUBJECT: PH502 ADVANCED QUANTUM MECHANICS

TIME: 3 Hours FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

Q.1(a)	Applying non-degenerate perturbation theory Derive unperturbed, first order perturbation and second order perturbation equations.	[5]	CO CO1	BL III
Q.1(b)	Evaluate the first order energy.	[5]	CO1	٧
Q.2(a) Q.2(b)	Explain with a diagram spin-orbit interaction. Discuss the importance of Born-Oppenheimer approximation?	[5] [5]	CO1 CO2	II VI
Q.3(a)	Write down the time dependent wave function $\Psi(t)$ of a two level system containing the coefficients c_a and c_b . Discuss the time dependent perturbation method to obtain the derivative of c_a and c_b .	[5]	CO4	VI
Q.3(b)	When the perturbation is small, Find c_a and c_b in the first and second order approximation.	[5]	CO4	I
Q.4(a)	Develop an expression for vector potential of pure radiation field using method of separation of variables.	[5]	CO3	Ш
Q.4(b)	Find also the Hamiltonian of the radiation field due to electric field only.	[5]	CO3	I
Q.5(a)	Starting from the Dirac Hamiltonian, construct Dirac relativistic equation for a free particle.	[5]	CO5	VI
Q.5(b)	Determine suitable form of Dirac matrices.	[5]	CO5	٧

:::::22/11/2023 E:::::