BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: IMSC SEMESTER: V
BRANCH: PHYSICS SESSION: MO/2023

SUBJECT: PH302 SOLID STATE PHYSICS

TIME: 3 Hours FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

Q.1(a)	Illustrate the properties of a reciprocal lattice. Show that FCC lattice is reciprocal to BCC	[5]	CO CO1	BL BL2
Q.1(b)	lattice. What is the geometrical structure factor? Determine the geometrical structure factor for a BCC crystal and account for the missing reflections for it.			BL5
Q.2(a)	Develop the dispersion relationship for a one-dimensional atomic crystal and explain the nature of acoustic and optical modes.	[5]	CO2	BL6
Q.2(b)	Derive an expression for the lattice specific heat capacity of a solid using the Einstein model. Outline the successes and failures of this model.	[5]	CO2	BL2
Q.3(a)	Develop an expression for paramagnetic susceptibility using Langevin's theory of	[5]	CO3	BL6
Q.3(b)	paramagnetism. Explain the Weiss theory of ferromagnetism and give an account of hysteresis and Curie point in Ferromagnetic materials based on this theory			BL5
Q.4(a)	What is the Hall coefficient? Show that for a p-type semiconductor the Hall coefficient is given by:	[5]	CO4	BL2
	$R_H = \frac{1}{pe}$			
Q.4(b)	Using the extended zone scheme, explain the formation of allowed and forbidden energy bands	[5]	CO4	BL5
Q.5(a)	What are superconductors? Show that the behavior of a superconductor different from a perfect conductor.	[5]	CO5	BL2
Q.5(b)	Derive London's equations and explain the term coherence length.	[5]	CO5	BL5

:::::23/11/2023 E:::::