BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: B.SC. SEMESTER: I
BRANCH: CHEMISTRY SESSION: MO/2023

SUBJECT: PH109 PHYSICS-I

TIME: 3 HOURS FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

Q.1(a) Q.1(b)	Show that Electric field is a conservative field. Find the expression for energy density in electrostatic field.	[5] [5]	CO 1 1	BL 2 1,2
Q.2(a)	Consider an infinite sheet of uniform charge density ρ_s C/m ² . Find the filed due to	[5]	2	3
Q.2(b)	this sheet at a random point P. Describe the term dielectric constant and dielectric strength.	[5]	2	1
Q.3(a) Q.3(b)	Write the assumption of liquid drop model. Find the density of the $^{12}\mathrm{C}_6$.	[5] [5]	3	2 2,3
Q.4(a) Q.4(b)	Show that the Newton's dark ring radius is proportion to root of wavelength. Find the wavelength of the light used if the $4^{\rm th}$ dark ring has diameter of 8 mm and radius of curvature of lens used is 90cm.	[5] [5]		1,2 2,3
Q.5(a)	What do you understand by length contraction. Derive the expression. Compute the contracted length of an object whose initial length 10 m and travel with a velocity 0.75c?	[5]	5	2,3
Q.5(b)	Derive the relation between kinetic energy, total energy and rest mass energy of system for relativistic motions.	[5]	5	2

:::::13/12/2023 M:::::