BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION MO/2023)

CLASS: B. TECH SEMESTER : III
BRANCH: MECHANICAL AND PIE SESSION : MO/2023

SUBJECT: PE214 METALLURGICAL AND MATERIALS ENGINEERING

TIME: 02 Hours FULL MARKS: 25

INSTRUCTIONS: 1. The question paper contains 5 questions each of 5 marks and total 25 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates			
Q.1(a) I. A unit cell cannot have 100% atomic packing density - explain the statement wit	h [1+1]	CO CO1	BL BL2
a simple diagram. II. Determine the total number of atoms per unit cell for body centered cubi	С		
structure with the help of a diagram Q.1(b) A crystalline solid has a cubic unit cell with one atom per lattice point. If the lattice parameter, $a = 4.0786$ Å and atomic radius, $r = 1.442$ Å, determine whether the crystal structure is simple cubic, body centered cubic or face centered cubic.		CO1	BL3
Q.2(a) I. Name the different types of defects in crystalline solids with respect to th dimension of the defect and state which is the most relevant for explainin deformation of crystalline solids.		CO1	BL1
 II. State the Hume Rothery's rules for formation of substitutional solid solutions Q.2(b) I. Explain why ceramic solids are not suitable for processing by rolling or forging. II. Discuss the most important difference between a twin boundary and a grai boundary with a schematic microstructure. 	[1+2] n	CO1	BL2
Q.3(a) Temperature is a state function, but mechanical strain is not - justify this statemen with proper logic.	t [2]	CO2	BL3
Q.3(b) Discuss the invariant transformations (describing the suitable reactions) that occur o cooling below the following isothermal temperatures in plain carbon steel referrin to the iron-cementite phase diagram: (i) 1147 °C and (ii) 727 °C		CO2	BL2
Q.4(a) Draw a schematic binary (A-B) phase diagram with labelling showing: I. partial solubility of B in A but no solubility of A in B and	[2]	CO2	BL4
II. a eutectic transformation at an intermediate composition.Q.4(b) I. Compute the mass fractions of ferrite and cementite in pearlite.II. Draw the microstructure of pearlite with proper labelling.	[2+1]	CO2	BL3
Q.5(a) What is strain hardening? Why does it arise? Q.5(b) Select the correct choice: I. In isothermal transformation, the time to start the transformation is called (nucleation/kinetic/formation/incubation) time, and the same as a higher temperature (above the nose or knee) at a higher temperature is (lower/cannot be determined/higher/same) than that at a lower temperature. II. The basic difference between Fick's First Law and Second Law are related to (polymorphism/diffusion/osmosis/solidification) and for	it is er o	CO2 CO3	BL2 BL2

:::::22/09/2023 E:::::

III. The characterization technique appropriate for determining crystal structure of a phase in a crystalline solid is ______ (SEM/AFM/XRD/XRF) and the technique

and non-steady state/activation barrier of diffusion).

for determining micro-composition of a phase is

determining

(TEM/XRD/SPM/EDS).

_ (temperature range/composition of alloy/steady