BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: MPHARM SEMESTER: I

BRANCH: PHARMACY SESSION: MO/2023

SUBJECT: MPH103T MODERN PHARMACEUTICS

TIME: 3.00 Hours FULL MARK: 75

INSTRUCTIONS:

1. The missing data, if any, may be assumed suitably.

- 2. Before attempting the question paper, be sure that you have got the correct question paper.
- 3. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.
- 5. Answer any five questions.
- 1a. Derive the rate kinetics equation applicable for suspension dosage form and explain it.

1b. Determine elimination rate constant of a drug from the following plasma concentration vs time profile without using graph paper of a tablet containing 400 mg drug administered under fasting condition to human subjects.

Time (Hour)	Plasma Concentration (ng/mL)
0	0
1	265
2	486
3	895
4	1265
5	795
6	612
8	326
12	98

2a. Calculate the mean dissolution time (MDT) of the below-mentioned dissolution profile of a tablet containing 600 mg of drug.

Time (hour)	Cumulative percent drug release
0	0
1	22
2	32
3	45
4	57
5	64
6	71
7	82
8	91
10	100

- 2b. Write a short note on similarity factor and difference factor to compare the dissolution study of [8] test and reference drug product.
- 3a. Write a short note on diffusion study and various parameters by which permeation could be [7] demonstrated.

3b. Do the regression analysis by using y=a+bx as model and develop the equation with regression [8] coefficient value.

Concentration (mcg/mL)	Absorbance
1	0.095
2	0.165
3	0.245
4	0.345
5	0.512
6	0.589
7	0.712
8	0.849
10	0.986

[7]

4a.	Elucidate the purpose of experimental design and delineate the essential steps involved in its designing.	[7]
4b.	Justify that the prediction outside of the bounds of the independent variables are unreliable considering theoretical equation: $Y = 5 + 6 X_1 + 7 X_1^2 + 3 X_2$ and multiple regression equation: $Y = -7 + 7.2 X_1 + 7 X_1^2 + 11.4 X_2$	[8]
5a.	Illustrate the rationales behind transformation (coding) in optimization through a pertinent example.	[7]
5b.	Evaluate the components inherent in central composite design (CCD) and elucidate the process of blocking in CCD specifically when dealing with four factors.	[8]
6a.	Describe the electrical double layer, emphasizing the selective adsorption of cationic charge on particle surfaces.	[7]
6b.	Examine the key characteristics of DLVO theory with suitable illustration.	[8]
7a.	The rate constant k1 for the decomposition of 5-hydroxymethylfurfural at $120 ^{\circ}\text{C}$ (393 K) is 1.173 hr ⁻¹ or $3.258 \times 10^{-4} \text{sec}^{-1}$ and k2 at $140 ^{\circ}\text{C}$ (413 K) is 4.860 hr ⁻¹ . What is the activation energy, Ea, in kcal/mole and the frequency factor, A, in sec^{-1} for the breakdown of 5-HMF within this temperature range? R= 1.987 calories per mole-kelvin	[7]
7b.	Explain the significance of self-emulsifying system with a focus on its fate after oral consumption.	[8]

:::::23/11/2023 E:::::