BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION MO/23

CLASS: BTECH SEMESTER: VII BRANCH: MECHANICAL SESSION: MO/23

SUBJECT: ME401 REFRIGERATION AND AIRCONDITIONING

TIME: 03 Hours FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Steam Tables and Psychrometry chart will be supplied to the candidates.

- Q.1(a) Explain the construction and working of Bootstrap refrigeration system. Also show the [5] CO1 L3 various processes in T-s diagram.
 Q.1(b) An aircraft refrigeration plant has to handle a cabin load of 25 tonnes. The atmospheric [5] CO1 L3
- Q.1(b) An aircraft refrigeration plant has to handle a cabin load of 25 tonnes. The atmospheric [5] CO1 temperature is 16°C. The atmospheric air is compressed to a pressure of 0.96 bar and temperature of 29°C due to ram action. This is then further compressed in a compressor to 4.8 bar, cooled in a heat exchanger to 66°C, expanded in a turbine to 1 bar pressure and supplied to the cabin. The air leaves the cabin at a temperature of 26°C. The isentropic efficiencies of both compressor and turbine are 0.9. Calculate:
 - (i) Mass of air circulated per minute,

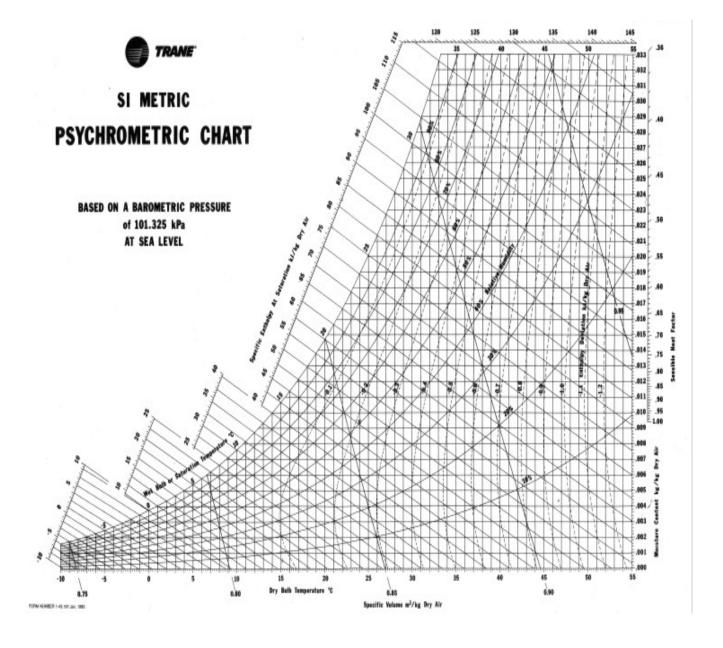
(ii) COP

take y=1.4 and $c_p=1.005$ kJ/kg.

Q.2(a) Discuss the effect of superheating and subcooling on the performance of vapour [5] CO2 L2 compression refrigeration system with the support of p-h and T-s diagram.

L3

Q.2(b) An ammonia refrigerator produces 15 Tonnes of ice from and at 0°C in a day of 24 hrs. [5] CO2 The temperature range of working cycle is 25°C. The ammonia vapour is dry and saturated at the end of compression. Assume actual COP is 55% of theoretical. Calculate the power required to drive the compressor and mass flow rate in kg/min.


Take $c_{p,water} = 4.2 \text{ kJ/kgK}$ and latent heat of ice = 335 kJ/kg.

Properties of ammonia are given below:

Toperties of animorna are given below.				
Saturation	Specific Enthalpy (kJ/kg)		Specific Entropy (kJ/kgK)	
temperature, °C	Liquid	Vapour	Liquid	Vapour
25	380.74	1319.21	0.3473	4.4894
-15	-54.56	1304.99	-0.2134	5.0585

- Q.3(a) Argue why vapour absorption system is better than vapour compression system. [5] CO3 L5 Q.3(b) With suitable sketch, explain the construction and working of Electrolux refrigerator. [5] CO3 L3
- Q.4(a) The pressure and temperature of mixture of dry air and water vapour are 736 mm of [5] CO4 L3 Hg and 21°C. The dew point temperature of the mixture is 15°C, find the followings
 - (using psychrometry relations):i. Partial pressure of water vapour in the mixture.
 - ii. Relative humidity
 - iii. Specific humidity
 - iv. Enthaply of mixture per kg of dry air.
- Q.4(b) 400 m³/min of recirculated air at 20°C DBT and 10°C DPT is mixed with 150 m³/min of [5] CO4 L3 fresh air at 35°CDBT and 45% RH. Determine (using psychrometric chart):
 - i. Enthaply
 - ii. Specific volume
 - iii. Humidity ratio
 - iv. Dew point temperature of the mixture.
- Q.5(a) Explain Freeze drying and what are the steps required to Freeze drying a product. [5] CO5 L1 Q.5(b) With neat sketch, explain the construction and working of Domestic refrigerator. [5] CO5 L3

:::::21/11/2023:::::M

