BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION MO 2023)

CLASS: IMSc SEMESTER : IX
BRANCH: Math SESSION : MO 2023

SUBJECT: MA503 STATISTICAL COMPUTING

TIME: 03 Hours FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

Q.1(a)	Define a random experiment. Why is it called random? Using the concept of Kolmogorov complexity, explain why the sequence ABCABCABC(to be repeated 500 times) cannot be called random.	[2]	CO=1Mod=1	BL=1
Q.1(b)		[3]	CO=1Mod=1	BL=2
Q.1(c)	Distinguish clearly between genuine and false randomness with examples.	[5]	CO=1Mod=1	BL=2
Q.2(a)	What are pseudorandom numbers? Why are they useful? Test whether the following sample can be regarded as random using run test for randomness (take the level of significance as 5%): 51 12 25 36 81 1 21 19 12 8 28 30 53 42 17 2 3 14 38 22 11 42 25 67 52 90 0 6 31 47 98 64 23	[2]	CO=2Mod=2	BL=1
Q.2(b)		[3]	CO=2Mod=2	BL=4
Q.2(c)	Explain the working of any one pseudorandom number generator which you have studied.	[5]	CO=2Mod=2	BL=2
Q.3(a)	Write an algorithm to simulate a geometric variate with $p = 1/3$	[2]	CO=3Mod=3	BL=3
Q.3(b)	Using two independent U(0,1) variate values as 0.6291 and 0.3517, simulate a standard Cauchy variate. All symbols have usual meanings.	[3]	CO=3Mod=3	BL=4
Q.3(c)	Write an algorithm to simulate the random variable Y whose distribution is given below:- Y: -2 -1 0 1 2 P(Y = y): 4/25 4/25 13/25 2/25	[5]	CO=3Mod=3	BL=4
Q.4(a)	Why should there be two lines of regression? Define a time series. Why is time series analysis important? Distinguish between Single and Double Exponential Smoothing models pointing out the situations in which they are useful.	[2]	CO=4Mod=4	BL=1
Q.4(b)		[3]	CO=4Mod=4	BL=2
Q.4(c)		[5]	CO=4Mod=4	BL=2
Q.5(a)	What is an outlier? Explain briefly why outlier analysis is useful. Explain Markov Chain Monte Carlo method with an example. Write an algorithm for simple random sampling without replacement.	[2]	CO=5Mod=5	B= 1
Q.5(b)		[3]	CO=5Mod=5	B= 2
Q.5(c)		[5]	CO=5Mod=5	BL=3

:::::29/11/2023:::::E