BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: IMSC SEMESTER: IX
BRANCH: MATHEMATICS & COMPUTING SESSION: MO/2023

SUBJECT: MA501 FUNCTIONAL ANALYSIS

TIME: 3 HOURS FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

.....

Q.1(a)	Let $l_p(p \ge 1)$ consist of all the sequences $x = \{x_n\}$ of complex numbers such that $\sum_{n=1}^{\infty} x_n ^p < \infty$. Define $\mathrm{d}: l_p \times l_p \to \mathbb{R}$ by $d(x,y) = (\sum_{n=1}^{\infty} x_n - y_n ^p)^{1/p}, x = \{x_n\}$, y = $\{y_n\}$. Show that 'd' is a metric on l_p .	[5]	CO 3	BL 1
Q.1(b)	Show that a compact set in a metric space is closed and bounded. Does the converse hold?- Explain.	[5]	3	2
Q.2(a)	Define equivalent norms. On \mathbb{R}^n for $x=(x_1,\ x_2,,x_n)$, define $ x _1=\sum_{i=1}^n x_i $ and $ x _{\infty}=\max\{ x_i ,\ 1\leq i\leq n\}$. Are $ \ _1$ and $ \ _{\infty}$ equivalent? Explain.	[5]	2,3	2
Q.2(b)	State Hahn-Banach theorem. Using it or otherwise show that first dual of a non-trivial normed space X is nonempty.	[5]	3	3
Q.3(a) Q.3(b)	State and prove the closed graph theorem. Show that the norm on an inner product space satisfies parallelogram laws and hence or otherwise show that the norm on l_p with $p \neq 2$ is not induced by an inner product.	[5] [5]	3	3 3
Q.4(a)	Define orthogonal and orthonormal set in an inner product space. Show that a finite orthonormal set is linearly independent.	[5]	1	1,3
Q.4(b)	Consider C[-1, 1] with inner product defined as $\langle x, y \rangle = \int_{-1}^{1} x(t) \bar{y}(t) dt$ and consider the set $\{t^3, t^2, t\}$. Orthonormalize it by Gram-Schmidt process in the said order.	[5]	1	3
Q.5(a)	Define adjoint and self-adjoint operators. Define an inner product on \mathbb{C}^n by $\langle x,y \rangle = x^T \overline{y}$. Let $T: \mathbb{C}^n \to \mathbb{C}^n$ be a self-adjoint operator. What will be the nature of the matrix representing T with respect to usual basis on \mathbb{C}^n ? Explain.	[5]	4	1,2
Q.5(b)	Define an unitary operator. Show that a bounded linear operator T on a complex Hilbert space H is unitary if and only if T is isometric and surjective.	[5]	4	3

:::::23/11/2023 E:::::