BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: IMSC SEMESTER : III
BRANCH: MATHEMATICS & COMPUTING SESSION : MO/2023

SUBJECT: MA202 MODERN ALGEBRA

TIME: 3 HOURS FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

Q.1(a)	Define and write general formula for the Mobius function. Find value of mobius function ((5000))	[5]	CO CO1	BL 1,2
Q.1(b)	function $\mu(5000)$. Define Euler's phi function $\phi(1200)$.	[5]	CO1	1,2
Q.2	A group homomorphism $f: G \to G'$ is a one-one if and only if kernel $ker(f) = \{e\}$, where G and G' are groups and e is an identity element of group G .	[10]	CO2	3
Q.3	State and prove Cayley's theorem.	[10]	CO3	3
Q.4	If R is a commutative ring with unity, then an ideal M of ring R is maximal ideal if and only if R/M is a field.	[10]	CO4	3
Q.5(a) Q.5(b)	Show that $\sqrt{-3}$ is a prime element of the ring $Z\sqrt{-3}$. Show that the ring of all integers Z is a Euclidean Domain with $d(a)= a $.	[5] [5]	CO5	2

:::::23/11/2023 E:::::