BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION MO2023)

CLASS: BTECH SEMESTER: V
BRANCH: ALL (OE) SESSION: MO2023

SUBJECT: IT361 BASICS OF INTELLIGENT COMPUTING

TIME: 02 Hours FULL MARKS: 25

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 5 marks and total 25 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates

Q.1(a)	What are the properties of Artificial Intelligence? Why we need highly efficient and	[2]	CO 1	BL BL1
Q.1(b)	intelligent computing system? Explain briefly about 8-puzzle problem.	[3]	1	BL2
Q.2(a)	Suggest application of artificial intelligence (AI) indicating the preceptor, environment, actuator, and performance measure	[2]	2	BL1
Q.2(b)	Explain briefly about Greedy best-first search algorithm with the help of example.	[3]	1	BL1
Q.3(a)	Explain the terms union, intersection, support, and alpha cut in relation to fuzzy sets using suitable examples.	[2]	2	BL1
Q.3(b)	Explain briefly about fuzzy inference system with the help diagram.	[3]	2	BL1
Q.4(a) Q.4(b)	What do you mean by travailing salesman problem? Explain it. Let R and S be two fuzzy relation defined here:	[2] [3]	1 2	BL1 BL3

		y1	y2	y3
R=	x1	0.0	0.2	0.8
	x2	0.3	0.6	1.0

		z1	z2	z3
S=	y1	0.3	0.7	1.0
	y2	0.5	1.0	0.6
	y3	1.0	0.2	0.0

Compute the result of R o S using max-min composition.

Q.5(a) What do you mean by cross over and mutation in Genetic algorithm? Explain it with the [2] 2 BL1 help of example.

Q.5(b) Maximize the function $f(x) = (x+2)^2$, Where x is permitted to vary between 0 and 31 [3] 2 BL3 using genetic algorithm by considering four members initial population.

:::::29/09/2023 M:::::