BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION MO/2023)

CLASS: IMSC. SEMESTER: V
BRANCH: FOOD TECHNOLOGY SESSION: MO/2023

SUBJECT: FT302 HEAT TRANSFER IN FOOD PROCESSING

TIME: 03 HOURS FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions, each of 10 marks and a total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates

.....

Q.1(a) Q.1(b)	Describe the principle modes of heat transfer with examples i) What is meant by one-dimension steady state heat transfer ii) What is the difference between Biot Number and Nusselt number? ii) Describe the difference between distributed and lumped analysis of unsteady state heat transfer	[5] [5]	CO 1 1	BL 1,2 1,2
Q.2(a)	i) What are the criteria for transition from natural to forced convection?ii) What is the Dittus-Boelter equation, and when is it applied?iii) What are the advantages and drawbacks of dimensional analysis	[5]	2	1,2,3
Q.2 (b)	A furnace inside temperature of 2250 K has a glass circular viewing of 6 cm diameter. If the transmissivity(ϵ) of the glass is 0.08, make calculations for the heat loss from the glass window due to radiation.	[5]	2,4	3,4
Q.3(a)	i) Define the overall heat transfer coefficientii) What are the broad classes of heat exchangers found in industryiii) When is LMTD method most applicable to heat exchanger calculations?	[5]	3	2,3
Q.3(b)	Hot water enters a counterflow heat exchanger at 95°C. This hot water is used to heat a cool stream of water from 8 to 40°C. The flow rate of the cool water is 1.2 kg/s, and the flow rate of the hot water is 2.7 kg/s. The overall heat-transfer coefficient is 850 W/m²°C. What is the area of the heat exchanger and its effectiveness?	[5]	3	2,3,4
Q.4(a) Q.4(b)	Describe the key mechanisms of microwave heating. What are the principles of ohmic heating?	[5] [5]	1,4 1,4	2,3 1,2,3
Q.5 (a)	It is desired to boil water at atmospheric pressure on a copper surface, which is electrically heated. Estimate the heat flux from the surface to the water, if the surface is maintained at 110 °C and the peak heat flux. Given:	[5]	5	2,3,4

For water at 100 °C, L=2257kJ/kg; ρ =958.4 kg/m³; c=4.211 kJ/kg-K; μ =277.5 x 10⁻⁶ Ns/m²; Pr=1.75; σ =58.9 x 10⁻³ N/m, C_{sf} =0.013, n=1

The Rohsenhow correlation for estimation of heat flux is given by

$$\frac{c\Delta T}{LPr^n} = C_{sf} \left[\frac{q}{\mu L} \sqrt{\frac{\sigma}{g(\rho - \rho_v)}} \right]^{0.33}$$

The peak flux is given by

$$q_c = \frac{\pi}{24} \rho_v^{0.5} L [\sigma g (\rho - \rho_v)]^{0.25}$$

- Q.5 (b) Saturated vapour of methanol condenses on a vertical plate at 1 atm. The vertical [5] 5 2,3,4 plate is maintained at 55 °C by cooling water at the other side. Calculate the following,
 - (i) Length of the plate over which the condensate film remains laminar.
 - (ii) What is the thickness of the film at the end of the laminar region?
 - (iii) Determine the average heat transfer coefficient and the rate of condensation in the laminar region.