BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION MO/2023)

CLASS: Int. M.Sc. SEMESTER: V **BRANCH: QEDS** SESSION: MO/2023 SUBJECT: ED307 PARAMETRIC INFERENCE TIME: 03 Hours **FULL MARKS: 50 INSTRUCTIONS:** 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates CO Q.1(a) Let $X_1, X_2, ..., X_n$ be an i.i.d. random sample from a Binomial(k, p) distribution where both k [4] CO1 and p are unknown. Find the method of moments estimator of k and p. Q.1(b) Let $X_1, X_2, ..., X_n$ be i.i.d. $Poisson(\theta), \theta \in [1, \infty)$. Find the Maximum Likelihood Estimator of CO2 [6] Q.2(a) Let $X_1, X_2, ..., X_n$ be i.i.d. $N(\theta, \sigma^2)$ where both θ and σ^2 are unknown. Find the Maximum [10] CO5 Likelihood Estimator of θ and σ^2 . Are both estimators sufficient? Are they minimal sufficient? Q.3(a) Let $X_1, X_2, ..., X_n$ be i.i.d. Bernoulli(p). Show that the variance of $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ attains [4] CO1 Cramer-Rao lower bound. Q.3(b) Define a conjugate family of distributions. Let $X \sim N(\theta, \sigma^2)$ and suppose the prior on θ is [6] CO2 $X \sim N(\theta, t^2)$, where σ^2, μ, t^2 are all known. Then find the posterior distribution of θ and determine if Normal family of distributions is a conjugate family or not. Q.4(a) Let X_1, X_2, \dots, X_n be a random sample from population having a pdf $f(x|\theta) = e^{-(x-\theta)}, \qquad \theta \leq x < \infty, \qquad -\infty < \theta < \infty \,.$ CO3 [10] Construct a UMP(α) test for testing H_0 : $\theta = 0$ against H_a : $\theta \neq 0$, where $\alpha \in (0,1)$. Q.5(a) Let $X_1, X_2, ..., X_n$ be a random sample from $N(\mu, \sigma^2)$ population. Assuming that $\sigma = 1$ is known [5] CO4 construct the UMP(0.05) test (critical region) for testing H_0 : $\mu = 0$ against H_a : $\mu \neq 0$. Q.5(b) Let $X_1, X_2, ..., X_n$ be a random sample from $N(\mu, \sigma^2)$ population. Assuming that σ is unknown [5] CO4 construct the UMP(0.05) test (critical region) for testing H_0 : $\mu = 0$ against H_a : $\mu \neq 0$.

:::::24/11/2023:::::M