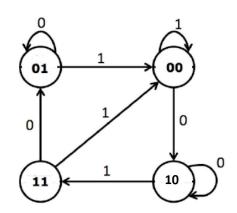
BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BTECH SEMESTER : III
BRANCH: ECE+CS+AIML+EEE SESSION : MO/2023


SUBJECT: EC203 DIGITAL SYSTEM DESIGN

TIME: 3 Hours FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

Q.1(a)	i) Convert the decimal number 165.54 into its hexadecimal equivalent.	[2+3]	CO 1	BL 1
Q.1(b)	ii) Define the terms fan-in and fan-out regarding logic gates. Design a 4 input NAND gate using CMOS transistors and explain the operation.	[5]	1	2
Q.2(a)	Minimize the following function using K-map and implement it using NAND gates. $F = \sum (2, 7, 11, 14, 15) + \sum d(0, 3, (10))$	[5]	2	1
Q.2(b)	The Excess-3 code is generated by adding 0011 to any BCD input. Design the circuit that coverts a BCD number to the Excess-3 code.	[5]	2	2
Q.3(a)	What is the drawback in a parallel adder and how it is overcome in look ahead carry adder? Explain the operation of it with diagram.	[5]	3	2
Q.3(b)	 i) Represent a logical diagram of 9's complementor circuit of a BCD input with explanation. ii) Realize the following Boolean function using an appropriate multiplexer F(A, B, C, D) = ∑ (0, 1, 3, 6, 15, 21, 25) 	[2.5+ 2.5]	3	3
Q.4(a)	What is the drawback in J-K Flip Flop? How is it overcome in Master-Slave J-K Flip-Flop? Explain the operation of it with diagram.	[5]	4	2
Q.4(b)	Consider the state diagram shown below, where each state has two bits in the form of Q_1Q_0 and the transition is represented by input X. Design the sequential circuit step by step assuming the required Flip Flop is J-K type.	[5]	4	3

Q.5(a)	Explain the working of a PAL with a standard logic circuit and diagram.	[5]	5	2
Q.5(b)	i) Describe the working principle of a 4:3 (12 bit) diode matrix ROM.	[3+2]	5	2

ii) What is multivibrator? Discuss their types and applications.