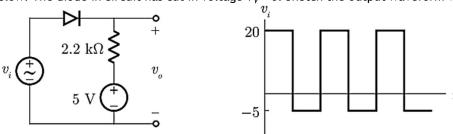
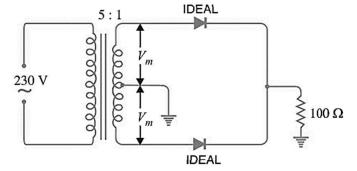
BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION MO/2023)

CLASS: B.TECH. SEMESTER: I

BRANCH: CSE/AIML/ECE/EEE SESSION: MO/2023


SUBJECT: EC101 BASICS OF ELECTRONICS AND COMMUNICATION ENGINEERING

TIME: 02 Hours **FULL MARKS: 25**


INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 5 marks and total 25 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates

- Mark CO BL Q.1(a) The reverse saturation current of a germanium diode operated at 300 Kelvin is 10µA. 2,6 Estimate its value at 350 Kelvin. Schematize the volt-ampere characteristic of an ideal p-n diode.
- Q.1(b) Write down the equation that gives volt-ampere relationship of diode. It contains [3] 2,3 1 the temperature implicitly in the two symbols. Write down what are those? Briefly explain why diode current depends on temperature.
- Q.2(a) A Ge diode is operated at a junction temperature of 27°C. For a forward current of 4 1 10 mA, V_D is found to be 0.3 V. (a) If V_D = 0.4 V, calculate the forward current. (b) Calculate the reverse saturation current.
- Schematize the V-I characteristic of a Zener diode. Sketch the circuit diagram in [3] 3,6 Q.2(b) 1 which such a diode is used to regulate the voltage across load resistance R_L against changes due to variations in load current and supply voltage. Briefly explain its operation to do so.
- Q.3(a) Consider the given circuit and a waveform for the input voltage v_i as shown in figure [2] 3 below. The diode in circuit has cut in voltage $V_{v} = 0$. Sketch the output waveform v_{o} .

In the center-tap circuit shown in Figure, the diodes are assumed to be ideal i.e., having zero internal resistance. Calculate (i) d.c. output voltage, (ii) peak inverse voltage, (iii) rectification efficiency.

Q.4(a)	Briefly explain whether the input circuit [i.e., base-emitter junction (J_E)], and output circuit [i.e., base-collector junction (J_C)] offer the same level (value) of resistance or not. If not, why. Why are NPN and PNP devices called transistors?	[2]	2	2
Q.4(b)	Sketch the structure of a PNP transistor and write down its terminal currents and internal currents with appropriate direction when it is properly biased. Briefly explain the reason for the flow of such currents.	[3]	2	3
Q.5(a)	Schematize the basic structure (simplified view) of an n-channel junction field-effect transistor (JFET) and label its terminals. Sketch its I_D-V_{DS} characteristics.	[2]	2	1,3,6
Q.5(b)	Demonstrate the types of MOSFETs (based on normally ON/OFF trait) by drawing their structures. Label all the regions and terminals of the same.	[3]	2	1,2

::::18/10/2023:::::