BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: IMSC SEMESTER: V
BRANCH: MATHEMATICS SESSION: MO/2023

SUBJECT: CS310 FORMAL LANGUAGES AND AUTOMATA THEORY

TIME: 3 Hours FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

Q.1(a)	Show that the language $L = \{awa: w \in \{a, b\}^*\}$ is regular. Further, show that L^2 is also regular. Also write an explicit expression for L^2 in terms of set notations.	[5]	CO CO1	BL 4
Q.1(b)	Define an NFA. How it is different from its deterministic counterpart? Find an NFA with four states for the language $L = \{a^n: n \ge 0\} \cup \{b^na: n \ge 1\}$.	[5]	CO1	1,
Q.2(a)	For $\Sigma = \{0, 1\}$, give a regular expression r such that $L(r) = \{w \in \Sigma^*: w \text{ has at least one pair of consecutive zeros}\}$. Also find a regular expression for the language $L = \{w \in \{0, 1\}^*: w \text{ has no pair of consecutive zeros}\}$.	[5]	CO2	3
Q.2(b)	If L_1 and L_2 are regular languages, then show that $L_1 \cup L_2$ and $L_1 \cap L_2$ are also regular.	[5]	CO2	4
Q.3(a)	Discuss the differences between linear and non-linear grammars. Specify the language for the grammar $S \rightarrow aSb \mid SS \mid \lambda$.	[5]	CO3	2, 3
Q.3(b)	Eliminate the useless symbols and productions from $G = (V, T, S, P)$, where $V = \{S, A, B, C\}$ and $T = \{a, b\}$, with P consisting of $S \rightarrow aS \mid A \mid C, A \rightarrow a, B \rightarrow aa, C \rightarrow aCb$.	[5]	CO3	3
Q.4(a)	Give a schematic representation of a pushdown automata. Construct an npda for the language $L = \{w \in \{a, b\}^*: n_a(w) = n_b(w)\}$.	[5]	CO4	1, 3
Q.4(b)	Show that the family of context-free languages is closed under UNION and CONCATENATION operations.	[5]	CO4	4
Q.5(a)	Draw a diagram giving an intuitive visualization of a Turing machine. Construct a Turing machine which, for a given instance, does not halt. In analogy with programming terminology, we say that the Turing machine is in an infinite loop.	[5]	CO5	1, 3
Q.5(b)	Design a Turing machine that accepts $L = \{a^nb^nc^n : n \ge 1\}$.	[5]	CO5	3

:::::22/11/2023 M:::::