BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: MTECH & PRE-PHD SEMESTER: I

BRANCH: Civil SESSION: MO/2023

SUBJECT: CE541 ANALYTICAL AND NUMERICAL METHODS IN STRUCTURAL ENGINEERING

TIME: 3 Hours FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

CO BL

[5]

- Q.1(a) In the calculation of the volume of a cube of nominal size, the uncertainty in the measurement of each side is 10%. Evaluate the uncertainty in the measurement of the volume.
- CO1 Analyze Evaluate

Q.1(b) The formula for normal strain in a longitudinal bar is given by:

[5] CO1 Analyze Evaluate

$$\in = \frac{F}{AE}$$

where

F = normal force applied

A = cross-sectional area of the bar

E = Young's modulus

If
$$F = 50 \pm 0.5 \,\mathrm{N}$$
, $A = 0.2 \pm 0.002 \,\mathrm{m}^2$, and $E = 210 \times 10^9 \pm 1 \times 10^9 \,\mathrm{Pa}$,

Determine the maximum error in the measurement of strain.

- Q.2(a) Using Newton's iterative method, find the real root of $xlog_{10}x = 1.2$ correct to five [5] CO2 Apply decimal places.
- Q.2(b) Solve by Jacobis method, the equations starting with the solution (2,3,0): [5] CO2 Apply

$$5x - y + z = 10$$
$$2x + 4y = 12$$
$$x + y + 5z = -1$$

Q.3 A simply supported beam carries a concentrated load P (kN) at its midpoint. [10] CO2 Apply Corresponding to various values of P, the maximum deflection Y (mm) is measured. The data are given below.

P:	100	120	140	160	180	200
Y:	0.45	0.55	0.60	0.70	0.80	0.85

Find a linear law of deflection in relation to the applied load.

Q.4(a) A solid of revolution is formed by rotating about the x-axis, the area between the x-axis, the lines x = 0 and x = 1 and a curve through the points with the following co-ordinates:

x:	0.00	0.25	0.50	0.75	1.00	
y:	1.0000	0.9896	0.9589	0.9089	0.8415	

Estimate the volume of the solid formed using Simpson's rule.

Hint: Required volume of solid generated = $\int_a^b \pi y^2 dx$

CO₂ Apply

Q.4(b) The upward velocity of a body is given as a function of time as

<i>t</i> , s	10	15	20	22
v, m/s	22	36	57	10

To find the acceleration at $t=17\,\mathrm{s}$, a scientist finds a second-order polynomial approximation for the velocity and then differentiates it to find the acceleration. What will be the estimated acceleration in $\mathrm{m/s}^2$ at $t=17\,\mathrm{s}$.

Q.5(a) The velocity (m/s) of a body is given as a function of time (seconds) by $v(t) = 200 \ln(1+t) - t, \ t \ge 0$ [5] CO3 Apply

Using Euler's method with a step size of 5 seconds, Determine the distance in meters traveled by the body from t=2 to t=12 seconds.

Q.5(b) Solve the above problem Q.5(a) by using the Runge-Kutta 2nd order Ralston method [5] CO3 Apply with a step size of 5 seconds.

:::::23/11/2023 E:::::

[5] CO3 Apply