BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: IMSc SEMESTER: VII
BRANCH: MATH & COMPUTING SESSION: MO/2023

SUBJECT: CA505 SOFTWARE ENGINEERING

TIME: 3 Hours FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

			CO	ВL
Q.1(a)	Define the stages of classical waterfall model.	[2]	1	1
Q.1(b)	Consider a basic COCOMO model for an embedded software system, where there are 60000	[3]	2	3
	lines of code. What should be the approximate time and effort to develop it?			
Q.1(c)	Time - Estimates (in weeks)	[5]	2	3

Activity ,	· Preceding activity	Most optimistic time (a)	Most likely time (m)	Most Pessimestic time (b)
Α	None	2	4	12
В	None	10	12	26
C	Α	8	9	10
D	A	10	15	20
E	A	7	7.5	11
F	B,C	9	9	9
G	D	3	3.5	7
н	E, F, G	5	5	5

Compute the Slack.

Q.2(a) Q.2(b)	What are the seven distinct tasks of requirement engineering Differentiate the problem of scope, the problem of understanding, and the problem of volatility.	[2] [3]	1 1	1 2
Q.2(c)	Create a scenario based requirement model for a web-based chatting software. Create a preliminary use case and refine it by appropriate questions.	[5]	3	6
Q.3(a) Q.3(b) Q.3(c)	Differentiate analysis and design. Explain different types of cohesion and coupling. State which are preferred. With an example, differentiate between functional and object oriented design.	[2] [4] [4]	1 1 3	1 2 4
Q.4(a) Q.4(b) Q.4(c)	Explain alpha and beta testing. Differentiate and explain different integration testing approaches. Write a C program to check if someone can vote (based on age 18). Compute the testing scenarios and Cyclomatic complexity.	[2] [3] [5]	1 2 4	1 2 3
Q.5(a)	Provide a justification on why quality control in software industries is more complex than hardware industries.	[2]	2	2
q.5(b)	Explain and draw the relationships between mean time to failure (MTTF), mean time to repair (MTTR), and mean time between failure (MTBF).	[3]	2	2
Q.5(c)	Write a C program to compute the minimum of an array. Compute the volume, difficulty, and effort from Halstead's software metrics.	[5]	4	3

:::::28/11/2023:::::E