BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION MO/2023)

CLASS: BCA SEMESTER: III
BRANCH: BCA SESSION: MO/2023

SUBJECT: CA207 INTRODUCTION TO COMPUTER ALGORITHMS

TIME: 02 Hours FULL MARKS: 25

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 5 marks and total 25 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates

.....

Q.1(a) Q.1(b)	Define the asymptotic notation ${\it O}$ (Big Oh). What is the worst-case time complexity of Insertion Sort? Justify your answer.	[2] [1+2]	CO B B	BL L-1 L- 2,3
Q.2(a) Q.2(b)	Is $x^2 + x log^3 x = \Omega(x)$? Justify your answer. Write Selection Sort algorithm. Explain with an example.	[1+1] [3]	B A	L-3 L-2
Q.3(a)	Apply Master's theorem to find an upper bound of $T(n)$: T(n) = 4T(n/2) + n, $T(1) = 1$	[2]	Α	L-2
Q.3(b)	Explain divide and conquer design paradigm with the help of ${\it Binary\ Search}$ algorithm.	[3]	Α	L-2
Q.4(a)	Compare Merge Sort and Quick Sort algorithm in terms of their space complexities.	[2]	С	L-3
Q.4(b)	Explain Merge Sort algorithm.	[3]		L-3
Q.5(a) Q.5(b)	Explain greedy design paradigm in brief. Solve the following instance of general Knapsack problem using a greedy method and hence find the maximum profit. Show all steps.	[2] [3]	A D	L-2 L-3

Capacity of the Knapsack: 12

Weight vector: < 1, 2, 2, 3, 2, 4, 1, 3 > Profit Vector: < 5, 11, 8, 9, 12, 16, 2, 6 >

:::::21/09/2023 E:::::