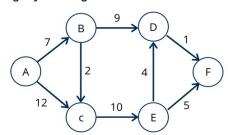
BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BCA SEMESTER: II/VI BRANCH: BCA SESSION: MO/2023


SUBJECT: CA157 DISCRETE STRUCTURES

TIME: 3 Hours FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

- Q.1(a) What are conditional statements? Show that $\left[(p \Rightarrow q) \land (r \Rightarrow s) \land (p \lor r) \right] \Rightarrow (q \lor s)$ is tautology
- Q.1(b) Prove the statement is true by using mathematical induction $1^2 + 3^2 + 5^2 + \cdots + (2n-1)^2 = \frac{n(2n+1)(2n-1)}{3}$
- Q.2(a) Define permutation and combination. How many committees of five students can be [5] chosen from 30 boys students and 22 girls students?
 - (a) if exactly three boy's students must be on each committee?
 - (b) If exactly four girl's students must be on each committee?
- Q.2(b) Solve the recurrence relation $d_n = 4d_{n-1} 4d_{n-2}$, $d_1 = 1$ $d_2 = 7$ [5] 2 3
- Q.3(a) Let $X = \{2, 3, 6, 12, 24, 36\}$ and relation \leq be such that $x \leq y$ if x divides y. Draw Hasse [5] 3 4 diagram of (X, \leq) .
- Q.3(b) If (L_1, \leq) and (L_2, \leq) are lattices then $(L_1 \times L_2, \leq)$ is a lattice and the partial order \leq of L is [5] 5 the product partial order
- Q.4(a) Let (T, v_0) be a rooted tree. Then [5] 4 5
 - (a) there are no cycles in T.
 - (b) v_0 is the only root of T.
 - (c) Each vertex in T, other than v_0 , has in-degree one, and v_0 has in-degree zero.
- Q.4(b) Find the Shortest path using Dijkstra Algorithm in vertices A and F. [5] 3 5

- Q.5(a) Let G be a group and let a and b be the element of G. Then prove [5] 4 5
 - (a) $(a^{-1})^{-1} = a$
 - (b) $(a b)^{-1} = b^{-1} a^{-1}$.
- Q.5(b) Write short notes on (a) Ring (b) field (c) Abelian Group.

[5] 1 1

:::::22/11/2023:::::M