BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

CLASS: B. Tech SEMESTER: 7th
BRANCH: BIOTECH SESSION: MO/2023

SUBJECT: BE402 BIOREACTOR AND BIOPROCESS DESIGN

TIME: 2 HOURS FULL MARKS: 25

INSTRUCTIONS:

- 1. The total marks of the questions are 25.
- 2. Candidates attempt for all 25 marks.
- 3. Before attempting the question paper, be sure that you have got the correct question paper.
- 4. The missing data, if any, may be assumed suitably.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

.....

Q1 Q1	(a) (b)	Name any 6 components of a typical bioreactor. Prove that in a chemostat, at steady state and for sterile feed, μ = D.	[2] [3]	CO1 CO1	BL BL1 BL3
Q2	(a)	An organism is used in chemostat culture in a 60 m³ fermenter. The feed contains 12 g/L glucose and μ_{max} and K_s of the organism is 0.3 h¹¹ and 0.2 g/L respectively. What flow rate is required for steady state substrate concentration to reach 1.5 g/L? What will be the cell density at that flow rate? $Y_{x/s}$ = 0.06 g/g	[5]	CO2	BL4
Q3		It is desired to produce 100 kg fructose per day in a batch reactor by enzymatic reaction. Initial glucose concentration is 100 g/L. Conversion efficiency is 40%. If, $K_m = 5 \times 10^{-4} \text{ kg/m}^3$, $V_{max} = 1.5 \times 10^{-2} \text{ kg/m}^3$.sec. Down time is 6 h. Calculate the volume of the batch reactor, PFR and MFR.	[5]	CO2	BL5
Q4 Q4	(a) (b)	Why scale down approach is employed? Describe the gassing out methods of determination of $K_{\text{\tiny L}}a$ for aerobic fermentation.	[2] [3]	CO3 CO1	BL2 BL3
Q5	(a)	A fed batch culture is operating with intermittent addition of glucose solution. The values of following parameters are given at t = 2 hours. Considering the system is at quasi steady state, calculate V_0 , S and X for the system. Given: V = 1000 mL; S_0 = 100 g/L; S_0 = 0.1 g/L; S_0 = 30 g; S_0 = 200 ml/h; S_0 = 0.3 h ⁻¹ ; S_0 = 0.5 g/g.	[5]	CO2	BL5

:::::20/09/2023 M:::::