BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION MO/2023)

CLASS: BTECH SEMESTER: Vth
BRANCH: BIOTECH SESSION: MO/2023

SUBJECT: BE302 FUNCTIONAL GENOMICS AND RDNA TECHNOLOGY

TIME: 02 Hours FULL MARKS: 25

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 5 marks and total 25 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates

.....

Q.1(a)	Based on the Eukaryotic DNA and cDNA sequence, how would you find an exons and introns sequence?	[2]	CO CO1	BL 4
Q.1(b)	The question of which came first; DNA, RNA, or protein is a classic problem in the origin of life studies. Discuss your overview based on the RNA world Hypothesis.	[3]	CO1	3
Q.2(a)	If you were to detect the expression level of a particular gene, which PCR technique	[2]	CO1	3
Q.2(b)	would you choose and why? With suitable example, Differentiate between forward and reverse genetics.	[3]	CO1	2
Q.3(a) Q.3(b)	Analyze the benefits of using RNA interference (RNAi) over traditional gene knockouts Propose a method to screen a number of T-DNA insertion events in a plant genome after Agrobacterium-mediated transformation.	[2] [3]	CO1 CO1	4 3
Q.4(a) Q.4(b)	Compare the results obtained from qPCR and end point PCR. Design a basic experiment to use site-directed mutagenesis to introduce a restriction site HinD III in a gene of interest.	[2] [3]	CO2 CO2	3 5
Q.5(a) Q.5(b)	Classify the Restriction endonucleases based on their functions. Discuss the applications of cDNA library.	[2] [3]	CO2 CO2	5 1

::::20/09/2023 M:::::