BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI

(END SEMESTER EXAMINATION)

CLASS:	MTECH
BRANCH:	SER

SEMESTER:I
BRANCH: SER
SESSION : MO/2022

SUBJECT: SR513 APPLIED MATHEMATICS
TIME: $\quad 3: 00$ Hours
FULL MARKS: 50

INSTRUCTIONS:

1. The question paper contains 5 questions each of 10 marks and total 50 marks.
2. Attempt all questions.
3. The missing data, if any, may be assumed suitably.
4. Before attempting the question paper, be sure that you have got the correct question paper.
5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.
Q.1(a) Using Newton-Raphson method, find the root of the equation $\mathrm{x} \sin \mathrm{x}+\cos \boldsymbol{x}=\mathbf{0}$ correct to three decimal places.
Q. 1 (b) Solve by Jacobi's method, the equations: $5 x-y+z=10 ; 2 x+4 y=12 ; x+y+5 z=-1$; starting with the solution $(2,3,0)$.
Q.2(a) The area A of a circle of diameter d is given for the following values:

d:	80	85	90	95	100
A:	5026	5674	6362	7088	7854

Calculate the area of a circle of diameter 105.
Q.2(b) Find $y(2)$ from the following data using Lagrange's formula,

$\mathrm{x}:$	0	1	3	4	5
$\mathrm{y}:$	0	1	81	256	625

Q.3(a) The distance (xcm) traversed by a particle at different times (t seconds) are given below.

$\mathrm{t}:$	0.0	0.1	0.2	0.3	0.4	0.5	0.6
$\mathrm{x}:$	3.01	3.16	3.29	3.36	3.40	3.38	3.32

Find the velocity of the particle at $\mathrm{t}=0.3$ seconds.
Q.3(b) Evaluate $\int_{0}^{2} \frac{1}{x^{3}+x+1} d x$ by Simpson's $1 / 3$ - rule with $\mathrm{h}=0.25$.
Q.4(a) Using Euler's method solve for y at $x=0.1$ from $\frac{d y}{d x}=x+y+x y, y(0)=1$, taking step size $h=$ 0.025 .
Q.4(b) Using Runge-Kutta method of order 4, compute $y(0.2)$ from $\mathbf{1 0} \frac{d y}{d x}=x^{2}+y^{2}, y(0)=1$, taking $\mathrm{h}=$ 0.1 .
Q.5(a) Classify the equation $x^{2} \frac{\partial^{2} u}{\partial x^{2}}+\left(1-y^{2}\right) \frac{\partial^{2} u}{\partial y^{2}}=0,-\infty<x<\infty,-1<y<1$.
Q.5(b) Write down the Crank-Nicolson method for $\frac{\partial u}{\partial t}=\boldsymbol{c}^{2} \frac{\partial^{2} u}{\partial x^{2}}$, where c is a constant and show the Jacobi’s method to solve this implicit scheme.

