BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

	(END SEMESTER EXAMINATION)			
CLASS: BRANCH	MTECH : SER	SEMESTER : I SESSION : MO/202	22	
TIME:	SUBJECT: SR513 APPLIED MATHEMATICS 3:00 Hours	FULL MARKS: 50		
 INSTRUCTIONS: The question paper contains 5 questions each of 10 marks and total 50 marks. Attempt all questions. The missing data, if any, may be assumed suitably. Before attempting the question paper, be sure that you have got the correct question paper. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 				
Q.1(a)	Using Newton-Raphson method, find the root of the equation $x \sin x + \cos x = 0$ decimal places.	correct to three	[5]	
Q.1(b)	Solve by Jacobi's method, the equations: $5x - y + z = 10$; $2x + 4y = 12$; $x + y + 5z = -1$ the solution (2, 3, 0).	; starting with	[5]	
Q.2(a)	The area A of a circle of diameter d is given for the following values: d: 80 85 90 95 100 A: 5026 5674 6362 7088 7854		[5]	
Q.2(b)	Calculate the area of a circle of diameter 105. Find y(2) from the following data using Lagrange's formula, x: 0 1 3 4 5 y: 0 1 81 256 625		[5]	
Q.3(a)	The distance (x cm) traversed by a particle at different times (t seconds) are given b t: $0.0 0.1 0.2 0.3 0.4 0.5 0.6$ x: $3.01 3.16 3.29 3.36 3.40 3.38 3.32$ Find the velocity of the particle at t = 0.3 seconds.	elow.	[5]	
Q.3(b)	Evaluate $\int_0^2 \frac{1}{x^3 + x + 1} dx$ by Simpson's 1/3 - rule with h = 0.25.		[5]	
Q.4(a)	Using Euler's method solve for y at x = 0.1 from $\frac{dy}{dx} = x + y + xy$, y(0) = 1, tak 0.025.	ing step size h =	[5]	
Q.4(b)	Using Runge-Kutta method of order 4, compute y(0.2) from $10\frac{dy}{dx} = x^2 + y^2$, y(0 0.1.) = 1, taking h =	[5]	
Q.5(a)	Classify the equation $x^2 \frac{\partial^2 u}{\partial x^2} + (1 - y^2) \frac{\partial^2 u}{\partial y^2} = 0, -\infty < x < \infty, -1 < y < 1.$		[5]	
Q.5(b)	Write down the Crank-Nicolson method for $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$, where c is a constant and Jacobi's method to solve this implicit scheme.	show the	[5]	

:::::24/11/2022::::E