BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	MTECH I: SPACE ENGINEERING AND ROCKETRY	SEMESTER : I SESSION : MO/2	022
TIME:	SUBJECT: SR503 SPACE ENGINEERING AND SPACE DYNAMICS 3:00 Hours	FULL MARKS: 50	0
INSTRUC 1. The o 2. Atter 3. The r 4. Befor 5. Table	CTIONS: question paper contains 5 questions each of 10 marks and total 50 marks. npt all questions. missing data, if any, may be assumed suitably. re attempting the question paper, be sure that you have got the correct question p es/Data hand book/Graph paper etc. to be supplied to the candidates in the examin	aper. Nation hall.	
Q.1(a)	Sketch a standard atmosphere model and explain the forces responsible for perturbat	tions in the	[5]
Q.1(b)	Explain why the launch environment is very dynamic. (BT Level: 1, CO: 4)		[5]
Q.2(a)	Prove that $\Lambda = (1 - \phi)^{-1}$, where Λ : mass ratio and ϕ : propellant ratio. (BT Level: 3,	CO: 2)	[2]
Q.2(b) Q.2(c)	Obtain angular momentum per unit mass (\overline{H}) as a constant of motion. (BT Level: 3, Define and explain a one-body problem as applied to the motion of an orbiting satelli (BT Level: 3, CO: 2,3)	CO: 2,3) te.	[3] [5]
Q.3(a)	Eccentricity of an elliptical orbit (e) varies with the injection position (γ) according t given below. Use this relation and linear expansions to obtain an error term f error in γ , assuming no error in V . $e = \sqrt{1 - \frac{rV^2}{\mu} \left(2 - \frac{rV^2}{\mu}\right) \cos^2 \gamma}$ where the symbols have their usual meaning.	o the relation or <i>e</i> due to	[5]
Q.3(b)	(BT Explain the impulsive shot in terms of thrust with a mathematical approach. (BT Level: 3, CO: 3,4)	Level: 4, CO: 2)	[5]
Q.4(a) Q.4(b)	Explain the difference between pointing and tracking problems with a sketch. (BT Le What are the essential characteristics of a gliding and a ballistic entry. (BT Le	evel: 3, CO: 3) evel: 3, CO: 3)	[5] [5]

Q.5 Compare batteries with solar arrays using power and usable duration as parameters. Also supplement [10] your answer with a sketch showing the usable region for these power sources. Can these sources be used in a definite sequence? (BT Level: 3, CO: 4)

:::::23/11/2022::::E