BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	MSC/IMSC/PRE PHD SEMESTE PHYSICS SESSION	SEMESTER : III/IX/NA SESSION : MO/2022		
SUBJECT: PH505 THEORY OF SOLIDS				
I IME:	3:00 Hours FULL MA	FULL MARKS: 50		
INSTRUC 1. The q 2. Attem 3. The m 4. Before 5. Table	TIONS: uestion paper contains 5 questions each of 10 marks and total 50 marks. upt all questions. hissing data, if any, may be assumed suitably. e attempting the question paper, be sure that you have got the correct question paper. s/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.	· 		
Q.1(a) Q.1(b) Q.1(c)	What are the drawbacks of free electron theory. [BT I] Explain the Kronig Penney Model. [BT V] Explain the significance of the effective mass of the electron. [BT V]	[2] [3] [5]	CO1 CO1 CO1	
Q.2(a) Q.2(b)	Explain electronic density of states (DOS) of a material. [BT II] Develop the mathematical relation and show that the DOS of a two-dimensional material does not depend on the energy. [BT III]	[2] [3]	CO2 CO2	
Q.2(c)	If electrons are treated as distinguishable particle, at what temp would they have an avg energy of 5.5 eV. [BT I]	[5]	CO2	
Q.3(a)	What is the physical significance of real and imaginary part of dielectric constant of a material? [BT I]	[2]	CO3	
Q.3(b)	Starting with Maxwell's equation develop the expression for the refractive index and permittivity of nonmagnetic material. [BTVI]	[3]	CO3	
Q.3(c)	If a dielectric is represented with an equivalent parallel RC circuit. Develop the relation between real and Imaginary part of the Impedance. Using the relation plot a graph between real and imaginary part of the impedance (No graph paper required). [BTVI] [BTIII]	[5]	CO3	
Q.4(a) Q.4(b) Q.4(c)	What is ferromagnetism in solids? [BT I] Develop the mathematical expression for phase transition using Ising Model. [BT III] Explain Bloch T ^{3/2} law. [BT II]	[2] [3] [5]	CO4 CO4 CO4	
Q.5(a)	Construct the relation between the refractive index and complex dielectric constant of a medium [BT III]	[2]	CO5	
Q.5(b) Q.5(c)	Explain the mechanism of propagation of light wave in a dense optical medium. [BT II] Develop the relation between the optical density and absorption coefficient of a medium [BT VI]	[3] [5]	CO5 CO5	

:::::24/11/2022:::::E