BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH:	IMSC/MSC PHYSICS	SEMESTER : IX/ SESSION : MO/2	/III 2022
TIME:	SUBJECT: PH502 ADVANCED QUANTUM MECHANICS 3:00 Hours	FULL MARKS: 50	
INSTRUCT 1. The qu 2. Attem 3. The mi 4. Before 5. Tables	TONS: estion paper contains 5 questions each of 10 marks and total 50 marks. ot all questions. ssing data, if any, may be assumed suitably. attempting the question paper, be sure that you have got the correct question /Data hand book/Graph paper etc. to be supplied to the candidates in the exa	on paper. mination hall.	
Q.1(a) Q.1(b) Q.1(c)	Distinguish between non-degenerate and degenerate level of a system. [CO1, B Applying non-degenerate perturbation theory Derive unperturbed, first order second order perturbation equations. [CO1, BT-III] Evaluate the first order energy. [CO1, BT-V]	T-IV] r perturbation and	[2] [3] [5]
Q.2(a) Q.2(b) Q.2(c)	What is the origin of fine structure of atomic line spectra? [CO1, BT-I] Explain with a diagram spin-orbit interaction. [CO1, BT-V] Develop the Hamiltonian of an electron incorporating relativistic mass correction	n. [CO1, BT-III]	[2] [3] [5]
Q.3(a) Q.3(b) Q.3(c)	Interpret the Dirac Hamiltonian for a free particle. [CO5, BT-V] Starting from the Dirac Hamiltonian, construct Dirac relativistic equation for a BT-VI] Determine suitable form of Dirac matrices. [CO5, BT-V]	free particle. [CO5,	[2] [3] [5]
Q.4(a) Q.4(b) Q.4(c)	Explain the quantization of radiation field? [CO3, BT-II] Develop an expression for vector potential of pure radiation field using meth variables. [CO3, BT-III] Find also the Hamiltonian of the radiation field due to electric field only. [CO3,	od of separation of BT-1]	[2] [3] [5]
Q.5(a) Q.5(b) Q.5(c)	What is the wave function of a two level perturbed system. [CO4, BT-I] Discuss the importance of Born-Oppenheimer approximation? [CO2, BT-VI] Show that the electronic, vibrational and rotational energy levels of molecules successively higher order in an approximation based on the small value of (m/M	can be obtained as). [CO2, BT-II]	[2] [3] [5]

:::::22/11/2022::::E