BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH:	IMSC/MSC/PRE-PHD SEMESTER EXAMINATION) SEMESTER : VII A PHYSICS SESSION : MO/20	
TIME:	SUBJECT: PH405 MODERN COMPUTATIONAL TECHNIQUES & PROGRAMMING 3:00 Hours FULL MARKS: 50)
INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.		
Q.1(a) Q.1(b)	Define absolute and relative errors. [CO1, BT1] The approximate values of the number $\frac{1}{3}$ are given as 0.30, 0.33 and 0.34. Which one of these is the best approximation? [CO1, BT3] Find a real root of the function $f(x) = 2\cos(x) + 3\sin(x) - \exp(x)$ such that the percentage	[2] [3] [5]
Q.2(a) Q.2(b)	error $c_p \le 5\%$. [CO1, BT3] What is the criterion for a square matrix to be singular? [CO2, BT1] Discuss the matrix inversion method for solving a set of linear equations. [CO2, BT2] Solve the following set of linear equations using the Gauss elimination method, [CO2, BT3] 2x + 3y + z = -1, x + 2y + 3z = -6, 3x + y + 2z = -7.	[2] [3] [5]
Q.3(b) Q.3(c)	Define interpolation. [CO3, BT1] Find the quadratic splines joining the points (1, 3), (2,-1), (3,2). Determine y(2.5) . [CO3, BT3] Construct a polynomial passing through the data points: (1, -1), (2, 15), (4, 161) & (7, 935). [CO3, BT5]	[2] [3] [5]
Q.4(b) Q.4(c)	Define the term numerical differentiation. [CO4, BT1] Evaluate the first and second derivative of y w.r.t. x at x=1.2 using the data points: (1, 0.3012), (1.2, 0.5697), (1.4, 0.8155), (1.6, 1.0288), (1.8, 1.2010) & (2.0, 1.3254). [CO4, BT3] Evaluate the integral provided below with eight subdivisions to four decimal places. $\frac{4}{2} - \frac{1}{ln(x)} dx$ Justify the rule you follow to evaluate the integral. [CO4, BT5]	[2] [3] [5]
Q.5(b)	Write down the Laplace's equation. [CO5, BT1] Use the Jacobi's method to solve the equation $u_{xx} + u_{yy} = 0$ for the Fig. 1. Perform 3 iterations to evaluate $u_1, u_2, u_3 & u_4$. [CO5, BT3]	[2] [3]
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Fig. 1 Q.5(c) Solve the question given in 5(b) using Gauss-Seidel method by performing three iterations again. [5] Which method gives better approximation: Jacobi or Gauss-Seidel? Justify your answer. [CO5, BT5]

:::::25/11/2022::::E