BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	IMSC/MSC I: PHYSICS	SEMESTER : VI SESSION : MO/	l/l 2022	
TIME:	SUBJECT: PH404 QUANTUM MECHANICS 3:00 Hours	FULL MARKS:	FULL MARKS: 50	
INSTRUC 1. The q 2. Attem 3. The n 4. Befor 5. Table	CTIONS: question paper contains 5 questions each of 10 marks and total 50 marks. npt all questions. nissing data, if any, may be assumed suitably. re attempting the question paper, be sure that you have got the correct c es/Data hand book/Graph paper etc. to be supplied to the candidates in th	uestion paper. ne examination hall.		
Q.1(a)	Provide the outer product matrix $ \alpha\rangle\langle\alpha $ and the inner product $\langle\alpha \alpha\rangle$ of th $ \alpha\rangle = \begin{pmatrix} 1\\ 1.5\\ 0.7 \end{pmatrix}$	e vector	[5]	
Q.1(b)	(0.5) Enlist the properties of a linear vector space with examples.	[CO1][BL2] [CO1][BL3]	[5]	
Q.2(a) Q.2(b)	If the annihilation and creation operators for a linear harmonic oscillator are defined as $a - (m\omega x + ip)/\sqrt{(2\hbar m\omega)}$ and $a^{\dagger} - (m\omega x - ip)/\sqrt{(2\hbar m\omega)}$, then use the commutation relation between position and momentum operators to show that $[a, a^{\dagger}] = 1$. [CO2][BL3] The spherical harmonics denoted by $Y^{m}_{l}(\theta, \phi)$ are eigenfunctions of the operator L^{2} , where L is the angular momentum operator. Explain why the parameter m can take integer values only. [CO2][BL2]		[5] [5]	
Q.3(a) Q.3(b)	Explain the Stern-Gerlach experiment and its significance. [CO3][BL2] Find the Clebsch-Gordan coefficients in the case of two particles with ang [CO3][BL3]	ular momenta j ₁ =j ₂ =1/2.	[5] [5]	
Q.4(a) Q.4(b)	Provide a sketch of the classical scattering of a particle and explain parameters involved. [CO4][BL2] Explain why the differential cross-section $D(\theta)$ of a quantum particle scattering amplitude $f(\theta)$ by the relation $D(\theta) = f(\theta) ^2$. [CO4][BL2]	the meanings of all the is given in terms of the 2]	[5] [5]	
Q.5(a) Q.5(b)	If E_{ψ} is the expectation value of a Hamiltonian with respect to an arbitrant that it is always larger than the ground state energy E_0 . [CO5][BL2] Show that if the solution of a time-independent Schrodinger equation is given by the solution of a time-independent schrodinger equation is given by the solution of a time-independent schrodinger equation is given by the solution of a time-independent schrodinger equation is given by the solution of a time-independent schrodinger equation is given by the solution of a time-independent schrodinger equation is given by the solution of a time-independent schrodinger equation is given by the solution of the solution of a time-independent schrodinger equation is given by the solution of the so	ry state $ \psi>$, then show ren by	[5] [5]	

 $\psi(x) = A(x) \exp[i\phi(x)]$, then the position-dependent amplitude is given by $A(x) = C/\sqrt{\phi'(x)}$. Here, the prime denotes derivative with respect to x, and C is a constant. Assume that E > V(x), where the symbols have their usual meanings. [CO5][BL2]

:::::24/11/2022::::E