BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH:	MTECH/MSC/IMSC SER/PHYSICS	SEMESTER : I/VII SESSION : MO/2022	
TIME:	SUBJECT: PH402 ELECTRODYNAMICS 3:00 Hours	FULL MARKS: 50	
INSTRUC 1. The qu 2. Attem 3. The m 4. Before 5. Tables	TIONS: Jestion paper contains 5 questions each of 10 marks and total 50 marks. Jot all questions. Jot all questions. Jot attempting the question paper, be sure that you have got the correct question /Data hand book/Graph paper etc. to be supplied to the candidates in the exa	on paper. mination hall.	
Q.1(a) Q.1(b)	Explain quantization of Charge and conservation of charge. [BT II, CO1] Prove that the electric field at a point is defined as the gradient of the potentia [BT V, CO1]	l at that point.	[2] [3]
Q.2(a) Q.2(b) Q.2(c)	What do you understand by electric flux density? [BT I, CO2] Discuss the necessity of introducing the vector D in presence of dielectric medium. How is D related to P and E. [BT VI, CO2] Draw and discuss the magnetization curves for soft iron and steel as they are taken through a complete cycle of magnetizing field. [BT VI, CO2]		[5] [2] [3] [5]
Q.3(a) Q.3(b) Q.3(c)	Distinguish between conduction and displacement current. [BT IV, CO3] Find the wavelength and propagation speed in Copper for radio waves at 1 MHz. For Copper assume $\mu = \mu_0$, $\epsilon = \epsilon_0$ and conductivity $\sigma = 5.8 \times 10^7 (\Omega m)^{-1}$ [BT I] [BT IV] [CO3] Explain and establish Poynting's theorem. [BT V, CO3]		[2] [3] [5]
Q.4(a) Q.4(b) Q.4(c)	Find the energy stored in a one-meter length of a Laser beam operating at 1mW EM wave is incident normally from air on air-glass interface. Taking refractive 1.5 determine the amplitude reflection coefficient and the percentage of total is transmitted into glass. [BT V, CO4] An EM wave is incident on the plane interface between two different media.	. [BT I, CO4] index of the glass is incident energy that Show that the wave	[2] [3] [5]
Q.5(a) Q.5(b) Q.5(c)	vectors of the incident, reflected and refracted waves all lie on the same plane. What do you mean by polarization of a plane electromagnetic wave? [BT I, CO5] Discuss retarded potential. [BT VI, CO5] Develop the expression for the magnetic vector potential at far fed (radiation) z	[BT II, CO4] one. [BT III, CO5]	[2] [3] [5]

:::::22/11/2022::::E