BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

CL BR	ASS: ANCH	IMSC I: PHYSICS	SEMESTE SESSION	ER: V : MO/2	022
		SUBJECT: PH303 ADVANCED MATHEMATICAL PHYSICS			
TIA	۸E:	2 HOURS	FULL MA	RKS: 2	25
INS 1. 2. 3. 4. 5.	The to Candi Before The m Table	CTIONS: otal marks of the questions are 25. dates attempt for all 25 marks. e attempting the question paper, be sure that you have got the correct question hissing data, if any, may be assumed suitably. s/Data hand book/Graph paper etc. to be supplied to the candidates in the ex	on paper aminatio	n hall.	
Q1 Q1	(a) (b)	Explain the properties of a vector space by taking an example into account. How the dimensions of a Vector Space is defined. When the vectors are calle linearly independent?	[2] ed [3]	CO 1 1	BL 1 1
Q2 Q2	(a) (b)	Define a group of order 4 and explain the basic properties of their elements. Explain homomorphic and isomorphic groups with suitable examples.	[2] [3]	1 1	1 2
Q3	(a)	Solve the transpose relation $(AB)' = B'A'$ for the following two matrices $\begin{bmatrix} 1 & -2 \\ 1 & -1 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$.	[2]	2	3
Q3	(b)	Analyze whether the given matrix is unitary. $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 5 \\ 3 & -1 & 2 \end{pmatrix}$	[3]	2	4
Q4 Q4	(a) (b)	Conclude that the diagonal elements of a Hermitian matrix are real. Develop an LU decomposition of the following matrix. $A = \begin{pmatrix} 2 & 3 & 1 \\ 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$	[2] [3]	2 2	3 6
Q5 Q5	(a) (b)	Define the characteristic equation of a matrix equation. Evaluate the eigenvalues and eigenvectors of the given matrix. $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$	[2] [3]	2 2	1 5

:::::: 01/10/2022 :::::M