BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

CLASS: BRANCH:		SEMESTER: Third SESSION: MO/2022		
	SUBJECT: PH213 MATHEMATICAL PHYSICS II			
TIME:	2 HOURS	FULL MARKS: 25		
 Candidate Before at The mission Tables/Date 	NS: marks of the questions are 25. es attempt for all 25 marks. tempting the question paper, be sure that you have got the correct que ing data, if any, may be assumed suitably. ata hand book/Graph paper etc. to be supplied to the candidates in the	examina	tion ha	
	ne linear, semi-linear and quasi-linear partial differential equations. Wh	at [2]	CO 1	B 1
	Monge curves? ve the Taylor and binomial series expansion formulae.	[3]	1	2
2 (a) Integ	grate the following equation using the method of integrating factor $y'(x) - \frac{2y}{x} = 3x^3$	[2]	1	
2 (b) Prov	e the mean value property for harmonic functions.	[3]	1	2
	ne exact and inexact differentials with examples. Jce the following differential equation to canonical form	[2] [3]	2 2	2
$\frac{\partial^2 u}{\partial x^2}$	$\frac{\partial^2 u}{\partial x \partial y} - 2 \frac{\partial^2 u}{\partial y^2} + 1 = 0$			
	ne tangent, principal normal and bi-normal to a curve. an equation or expression for the tangent plane to the surface $z = xy$	[2] at [3]	2 2	
the p	point (2,3,6)			
		_{is} [2]	3	2
	erentiable then $f(r) \vec{r}$ is irrotational.		-	
ک (b) Prov	$\mathbf{e} \nabla \times (\nabla \times \vec{A}) = - \nabla^2 \vec{A} + \nabla (\nabla \cdot \vec{A})$	[3]	3	4

:::::: 29/09/2022 :::::M