BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

(END SEMESTER EXAMINATION)				
CLASS: BRANCH		SEMESTER : III SESSION : MO/2022		
TIME:	SUBJECT: PH213 MATHEMATICAL PHYSICS II 3:00 Hours	FULL MARKS: 50		
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 				
Q.1(a) Q.1(b) Q.1(c)	What are the characteristic curves. Define exact and inexact differentials with examples. Find the general solution to the following differential equation $2\frac{\partial u}{\partial x} - 3\frac{\partial u}{\partial y} + 8u = 0$	[2] [<u>3]</u> [5]	CO 1 <u>1</u> 1	Bl 2 <u>2</u> 3
Q.2(a) Q.2(b) Q.2(c)	Define tangent, principal normal to a curve. Derive the equation for tangent plane of an arbitrary surface. Reduce the following differential equation to canonical form $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$	[2] [3] [5]		1 2 3
Q.3(a) Q.3(b) Q.3(c)	What is a directional derivative? State the Gauss theorem, Stokes theorem and Green's theorem. Give geometrical explanation of gradient, divergence and curl.	[2] [3] [5]	4	1 2 2
Q.4(a) Q.4(b) Q.4(c)	What is Jacobian of a coordinate transformation? Prove the Green's theorem in 2D plane. Evaluate $\int_{(1,0)}^{(-1,0)} \frac{-y dx + x dy}{x^2 + y^2}$ along the semi-circle of unit radius in $y \ge 0$ region	[2] [3] n.		1 2 3
Q.5(a) Q.5(b)	Define the Dirac delta function. Prove the following where x_i are the zeroes of $f(x)$. $\delta[f(x)] = \sum_{i} \delta(x - x_i) / f'(x_i)$	[2] [3]	5 5	2 2
Q.5(c)	For the following coordinate transformation $x^2 + y^2 = u_1^2$, $y/x = \tan u_2$, show the	nat [5]	5	3

the new curvilinear coordinate system is orthogonal.

:::::24/11/2022::::E