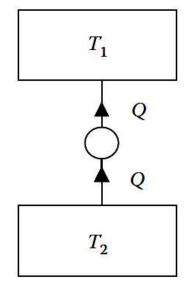
CLASS: IMSC BRANCH: PHYSICS SEMESTER: III SESSION: MO/2022

SUBJECT: PH201 THERMAL PHYSICS

TIME: 2 HOURS

FULL MARKS: 25


INSTRUCTIONS:

- 1. The total marks of the questions are 25.
- 2. Candidates attempt for all 25 marks.
- 3. Before attempting the question paper, be sure that you have got the correct question paper.
- 4. The missing data, if any, may be assumed suitably.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

- CO BL
 Q1 (a) Write the equation of internal energy for non-adiabatic work considering old [2] CO₁ 6 sign convention.
 Q1 (b) If the gas is compressed or expanded by motion of the piston, any change in [3] CO₂ 6 internal energy results from the piston's motion is due to work W. Write the
- signs of W (work) and Q (heat) during compression and expansion of the gas by the motion of the system using old sign convention.
- Q2 (a) One mole of ideal monatomic gas is confined in a cylinder by a piston and is [2] CO_1 5 maintained at a constant temperature T_0 by thermal contact with a heat reservoir. The gas slowly expands from V_1 to V_2 while being held at the same temperature T_0 . Why does the internal energy of the gas not change?
- Q2 (b) A monatomic ideal gas undergoes an adiabatic expansion from volume V_i to V_f . [3] CO_2 5 Obtain an expression for the ratio of the initial to the final temperature of the gas.
- Q3 (a) Refer to the figure below and,

[2] CO₁ 5

prove utilizing the concept of principle of increasing entropy that the process violates the second law.

Q3 (b) A Carnot heat engine, shown in figure below, receives energy from a reservoir at Tres through a heat exchanger where the heat transferred is proportional to

[3] CO₂ 5

the temperature difference as $\dot{Q}_H = K(T_{res} - T_H)$ It rejects heat at a given low temperature T_L . To design the heat engine for maximum work output, show that the high temperature, T_H , in the cycle should be selected as $T_H = \sqrt{T_{res}T_L}$

- Q4 (a) Explain pictorially the principle of thermodynamic square and write the [2] CO₁ 1 differential of Helmholtz function.
- Q4 (b) The Helmholtz function of one mole of a certain gas is defined as [3] CO₂ 6

$$f = f(V,T) = -\frac{\alpha}{V} - RT\ln(V-h) + j(T)$$

Where \boldsymbol{a} and \boldsymbol{b} are constants \boldsymbol{j} is a function of T only. Deduce the expression for the number of microstates

- Q5 (a) Explain the three dimensional representation of PVT surfaces. [2] CO₁ 2
- Q5 (b) Why PT representation is favored over PV representation in the study of [3] CO $_2$ 2 thermodynamics.

:::::: 27/09/2022 M ::::::