BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

CLASS: BTECH/IMSC. BRANCH: BT/CHEMICAL/CIVIL/MECH/PROD/FT

SUBJECT: PH113 PHYSICS

SEMESTER: I

SESSION: MO/2022

TIME:	2 HOURS FUL	LL MARKS: 25			
 INSTRUCTIONS: The question paper contains 5 questions each of 5 marks and total 25 marks. Attempt all questions. The missing data, if any, may be assumed suitably. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates. 					
Q.1(a) Q.1(b)	Explain polarization of light. Develop the condition for maxima and minima due to interference in thin parallel film. (Oblique incidence)	[2] [3]	CO 1 1	BL II III	
Q.2(a) Q.2(b)	Explain why Newton's rings are circular in nature. Formulate the expression for intensity distribution due to double slit Fraunhofer diffraction pattern.	[2] [3]	1 1	II VI	
Q.3(a) Q.3(b)	Define Gauss's law. Develop the differential form of Gauss's law from its integral form. Formulate the relation between E and V in differential form. Show that electrostatic field is conservative in nature.	[2] [3]	2 2	I VI	
Q.4(a) Q.4(b)	Explain equation of continuity. Define displacement current. Develop the boundary condition between B & H in magnetostatics across an interface separating two media having different permeabilities.	[2] [3]	2 2	V III	
Q.5(a) Q.5(b)	Define postulates of special theory of relativity. Construct Lorentz transformation equations of space and time coordinates.	[2] [3]	3 3	I VI	

:::::: 17/01/2023 :::::M