BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

CLASS: IMSC BRANCH: MATHS AND CHEMISTRY SEMESTER: III SESSION: MO/2022

SUBJECT: PH111 PHYSICS-II

TIME: 2 HOURS

FULL MARKS: 25

INSTRUCTIONS:

- 1. The total marks of the questions are 25.
- 2. Candidates attempt for all 25 marks.
- 3. Before attempting the question paper, be sure that you have got the correct question paper.
- 4. The missing data, if any, may be assumed suitably.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

Q1	(a)	Write the equations of internal energy for the adiabatic and non-adiabatic work for the thermodynamic processes	[2]	C0 ₁	4
Q1	(b)	One mole of ideal monatomic gas is confined in a cylinder by a piston and is maintained at a constant temperature T_0 by thermal contact with a heat reservoir. The gas slowly expands from V_1 to V_2 while being held at the same temperature T_0 . Why does the internal energy of the gas not change?	[3]	CO ₂	4
Q2	(a)	If the gas is compressed or expanded by motion of the piston, any change in internal energy results from the piston's motion is due to work W. Write the signs of W (work) and Q (heat) during compression and expansion of the gas by the motion of the system.	[2]	CO ₁	5
Q2	(b)	Referring to Q2 (a) state whether internal energy is changed or unchanged during the process of compression and expansion of the gas by the motion of the system.	[3]	CO ₂	4
Q3	(a)	A monatomic ideal gas undergoes an adiabatic expansion from volume V_i to V_f . Obtain an expression for the ratio of the initial to the final temperature of the gas	[2]	C0 ₁	4
Q3	(b)	Write the expression for volume expansivity (β) and volume compressibility (κ). If they are related by an expression, $C_P - C_V - VT\beta^2/\kappa$	[3]	CO ₂	2
		Show that the relationships that connect the specific heats at constant volume and constant pressure are consistent for n mole of an ideal gas. P, V, and T are thermodynamic variables.			
Q4	(a)	The quantum mechanics is concerned with the wave function Ψ which itself has no physical meaning. However, the square of its absolute magnitude $ \Psi ^2$ evaluated at a particular place and at a particular time is proportional to the probability of finding the body at that time (probability density/distribution function). What would be the expectation value for its momentum when the wave function Ψ is normalized and not normalized?	[2]	CO ₁	5
Q4	(b)	If the speed distribution function $f(v)$ of a body between v and $v + dv$ is given by $f(v)dv \propto v^2 e^{-mv^2/2\kappa_B T} dv$ Calculate the expectation value of square of the speed.	[3]	CO ₂	5
Q5	(a)	What do you mean by ultraviolet catastrophe and how this catastrophe	[2]	C0 ₁	5
Q5	(b)	Under what approximations Planck's work reduces to Rayleigh-Jeans radiation density.	[3]	CO ₂	5